Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Some remarks on graded nilpotent Lie algebras and the Toral Rank Conjecture

Ames, Guillermo; Cagliero, Leandro RobertoIcon ; Cruz, Mónica Nancy
Fecha de publicación: 03/2015
Editorial: World Scientific
Revista: Journal of Algebra and its Applications
ISSN: 0219-4988
e-ISSN: 1793-6829
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

If is a Zd+-graded nilpotent finite-dimensional Lie algebra over a field of characteristic zero, a well-known result of Deninger and Singhof states that dimH∗() ≥ L(p) where p is the polynomial associated to the grading and L(p) is the sum of the absolute values of the coefficients of p. From this result they derived the Toral Rank Conjecture (TRC) for 2-step nilpotent Lie algebras. An algebraic version of the TRC states that dimH∗() ≥ 2dim() for any finite-dimensional nilpotent Lie algebra with center. The TRC is more than 25 years old and remains open even for Zd+-graded 3-step nilpotent Lie algebras. Investigating to what extent the bound given by Deninger and Singhof could help to prove the TRC in this case, we considered the following two questions regarding a nilpotent Lie algebra with center : (A) If admits a Z+d-grading n = Z+d nα, such that its associated polynomial p satisfies L(p) > 2dim, does admit +-grading n = n1 ⊕ n2 ⊕ nk such that its associated polynomial p′ satisfies L(p′) > 2dim (B) If is r-step nilpotent admitting a grading n = n1• n2 Š• ⋯ nk such that its associated polynomial p satisfies L(p) > 2dim, does admit a grading n= n1 ⊕ n2 ⊕ ⊕ nr such that its associated polynomial p′ satisfies L(p′) > 2dim? In this paper we show that the answer to (A) is yes, but the answer to (B) is no.
Palabras clave: COHOMOLOGY OF LIE ALGEBRAS , GRADINGS , NILPOTENT LIE ALGEBRAS , TORAL RANK CONJECTURE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 250.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/185747
URL: https://www.worldscientific.com/doi/10.1142/S0219498815500243
DOI: http://dx.doi.org/10.1142/S0219498815500243
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Ames, Guillermo; Cagliero, Leandro Roberto; Cruz, Mónica Nancy; Some remarks on graded nilpotent Lie algebras and the Toral Rank Conjecture; World Scientific; Journal of Algebra and its Applications; 14; 2; 3-2015; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES