Artículo
On two finiteness conditions for Hopf algebras with nonzero integral
Fecha de publicación:
03/2015
Editorial:
Scuola Normale Superiore
Revista:
Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv
ISSN:
0391-173X
e-ISSN:
2036-2145
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A Hopf algebra is co-Frobenius when it has a nonzero integral. It is proved that the composition length of the indecomposable injective comodules over a co-Frobenius Hopf algebra is bounded. As a consequence, the coradical filtration of a co-Frobenius Hopf algebra is finite; this confirms a conjecture by Sorin Dăscălescu and the first author. The proof is of categorical nature and the same result is obtained for Frobenius tensor categories of subexponential growth. A family of co-Frobenius Hopf algebras that are not of finite type over their Hopf socles is constructed, answering so in the negative another question by the same authors.
Palabras clave:
Co-Frobenius Hopf algebras
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Andruskiewitsch, Nicolas; Cuadra, Juan; Etingof, Pavel; On two finiteness conditions for Hopf algebras with nonzero integral; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; XIV; 2; 3-2015; 1-34
Compartir
Altmétricas