Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

High-dimensional atomistic neural network potential to study the alignment-resolved O2 scattering from highly oriented pyrolytic graphite

Santamaría, Alejandro Rivero; Ramos Acevedo, MaximilianoIcon ; Alducin, Maite; Busnengo, Heriberto FabioIcon ; Muiño, Ricardo Díez; Juaristi, J. Iñaki
Fecha de publicación: 04/2021
Editorial: American Chemical Society
Revista: Journal of Physical Chemistry A
ISSN: 1089-5639
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física Atómica, Molecular y Química

Resumen

A high dimensional and accurate atomistic neural network potential energy surface (ANN-PES) that describes the interaction between one O2 molecule and a highly oriented pyrolytic graphite (HOPG) surface has been constructed using the open-source package (aenet). The validation of the PES is performed by paying attention to static characteristics as well as by testing its performance in reproducing previous ab initio molecular dynamics simulation results. Subsequently, the ANN-PES is used to perform quasi-classical molecular dynamics calculations of the alignment-dependent scattering of O2 from HOPG. The results are obtained for 200 meV O2 molecules with different initial alignments impinging with a polar incidence angle with respect to the surface normal of 22.5° on a thermalized (110 and 300 K) graphite surface. The choice of these initial conditions in our simulations is made to perform comparisons to recent experimental results on this system. Our results show that the scattering of O2 from the HOPG surface is a rather direct process, that the angular distributions are alignment dependent, and that the final translational energy of end-on molecules is around 20% lower than that of side-on molecules. Upon collision with the surface, the molecules that are initially aligned perpendicular to the surface become highly rotationally excited, whereas a very small change in the rotational state of the scattered molecules is observed for the initial parallel alignments. The latter confirms the energy transfer dependence on the stereodynamics for the present system. The results of our simulations are in overall agreement with the experimental observations regarding the shape of the angular distributions and the alignment dependence of the in-plane reflected molecules.
Palabras clave: NEURAL NETWORKS , MOLECULAR DYNAMICS , OXYGEN , HOPG
Ver el registro completo
 
Archivos asociados
Tamaño: 2.365Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/185701
DOI: http://dx.doi.org/10.1021/acs.jpca.1c00835
Colecciones
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Santamaría, Alejandro Rivero; Ramos Acevedo, Maximiliano; Alducin, Maite; Busnengo, Heriberto Fabio; Muiño, Ricardo Díez; et al.; High-dimensional atomistic neural network potential to study the alignment-resolved O2 scattering from highly oriented pyrolytic graphite; American Chemical Society; Journal of Physical Chemistry A; 125; 12; 4-2021; 2588-2600
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES