Mostrar el registro sencillo del ítem
dc.contributor.author
Cerminati, Sebastián
dc.contributor.author
Leroux, Melanie
dc.contributor.author
Anselmi, Pablo Ariel
dc.contributor.author
Peirú, Salvador
dc.contributor.author
Alonso, Juan Carlos
dc.contributor.author
Priem, Bernard
dc.contributor.author
Menzella, Hugo Gabriel
dc.date.available
2023-01-26T12:12:42Z
dc.date.issued
2021-04
dc.identifier.citation
Cerminati, Sebastián; Leroux, Melanie; Anselmi, Pablo Ariel; Peirú, Salvador; Alonso, Juan Carlos; et al.; Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain; Springer; Applied Microbiology and Biotechnology; 105; 8; 4-2021; 3075-3086
dc.identifier.issn
0175-7598
dc.identifier.uri
http://hdl.handle.net/11336/185682
dc.description.abstract
Hyaluronic acid (HA) is a high value glycosaminoglycan mostly used in health and cosmetic applications. Commercial HA is produced from animal tissues or in toxigenic bacteria of the genus Streptococcus grown in complex media, which are expensive and raise environmental concerns due to the disposal of large amounts of broth with high organic loads. Other microorganisms were proposed as hosts for the heterologous production of HA, but the methods are still costly. The extraordinary capacity of this biopolymer to bind and retain water attracts interest for large-scale applications where biodegradable materials are needed, but its high cost and safety concerns are barriers for its adoption. Bacillus subtilis 3NA strain is prototrophic, amenable for genetic manipulation, GRAS, and can rapidly reach high cell densities in salt-based media. These phenotypic traits were exploited to create a platform for biomolecule production using HA as a proof of concept. First, the 3NA strain was engineered to produce HA; second, a chemically defined medium was formulated using commodity-priced inorganic salts combined at the stoichiometric ratios needed to build the necessary quantities of biomass and HA; and third, a scalable fermentation process, where HA can be produced at the maximum volumetric productivity (VP), was designed. A comparative economic analysis against other methods indicates that the new process may increase the operating profit of a manufacturing plant by more than 100%. The host, the culture medium, and the rationale employed to develop the fermentation process described here, introduce an IP-free platform that could be adaptable for production of other biomolecules. Key points: • A biomolecule production platform based on B. subtilis 3NA strain and a synthetic medium was tested for hyaluronic acid biosynthesis • A fermentation process with the maximum volumetric productivity was designed • A techno-economic analysis forecasts a significant reduction in the manufacturing cost compared to the current methods
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BACILLUS SUBTILIS
dc.subject
FERMENTATION
dc.subject
GREEN CHEMISTRY
dc.subject
HYALURONIC ACID
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.
dc.subject.classification
Biotecnología Industrial
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T16:56:02Z
dc.identifier.eissn
1432-0614
dc.journal.volume
105
dc.journal.number
8
dc.journal.pagination
3075-3086
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Cerminati, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina
dc.description.fil
Fil: Leroux, Melanie. Universite Grenoble Alpes.; Francia
dc.description.fil
Fil: Anselmi, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina
dc.description.fil
Fil: Peirú, Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina
dc.description.fil
Fil: Alonso, Juan Carlos. Universidad Autónoma de Madrid; España. Consejo Superior de Investigaciones Científicas. Centro Nacional de Biotecnología; España
dc.description.fil
Fil: Priem, Bernard. Universite Grenoble Alpes.; Francia
dc.description.fil
Fil: Menzella, Hugo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina
dc.journal.title
Applied Microbiology and Biotechnology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00253-021-11246-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00253-021-11246-6
Archivos asociados