Mostrar el registro sencillo del ítem

dc.contributor.author
Cerminati, Sebastián  
dc.contributor.author
Leroux, Melanie  
dc.contributor.author
Anselmi, Pablo Ariel  
dc.contributor.author
Peirú, Salvador  
dc.contributor.author
Alonso, Juan Carlos  
dc.contributor.author
Priem, Bernard  
dc.contributor.author
Menzella, Hugo Gabriel  
dc.date.available
2023-01-26T12:12:42Z  
dc.date.issued
2021-04  
dc.identifier.citation
Cerminati, Sebastián; Leroux, Melanie; Anselmi, Pablo Ariel; Peirú, Salvador; Alonso, Juan Carlos; et al.; Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain; Springer; Applied Microbiology and Biotechnology; 105; 8; 4-2021; 3075-3086  
dc.identifier.issn
0175-7598  
dc.identifier.uri
http://hdl.handle.net/11336/185682  
dc.description.abstract
Hyaluronic acid (HA) is a high value glycosaminoglycan mostly used in health and cosmetic applications. Commercial HA is produced from animal tissues or in toxigenic bacteria of the genus Streptococcus grown in complex media, which are expensive and raise environmental concerns due to the disposal of large amounts of broth with high organic loads. Other microorganisms were proposed as hosts for the heterologous production of HA, but the methods are still costly. The extraordinary capacity of this biopolymer to bind and retain water attracts interest for large-scale applications where biodegradable materials are needed, but its high cost and safety concerns are barriers for its adoption. Bacillus subtilis 3NA strain is prototrophic, amenable for genetic manipulation, GRAS, and can rapidly reach high cell densities in salt-based media. These phenotypic traits were exploited to create a platform for biomolecule production using HA as a proof of concept. First, the 3NA strain was engineered to produce HA; second, a chemically defined medium was formulated using commodity-priced inorganic salts combined at the stoichiometric ratios needed to build the necessary quantities of biomass and HA; and third, a scalable fermentation process, where HA can be produced at the maximum volumetric productivity (VP), was designed. A comparative economic analysis against other methods indicates that the new process may increase the operating profit of a manufacturing plant by more than 100%. The host, the culture medium, and the rationale employed to develop the fermentation process described here, introduce an IP-free platform that could be adaptable for production of other biomolecules. Key points: • A biomolecule production platform based on B. subtilis 3NA strain and a synthetic medium was tested for hyaluronic acid biosynthesis • A fermentation process with the maximum volumetric productivity was designed • A techno-economic analysis forecasts a significant reduction in the manufacturing cost compared to the current methods  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BACILLUS SUBTILIS  
dc.subject
FERMENTATION  
dc.subject
GREEN CHEMISTRY  
dc.subject
HYALURONIC ACID  
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T16:56:02Z  
dc.identifier.eissn
1432-0614  
dc.journal.volume
105  
dc.journal.number
8  
dc.journal.pagination
3075-3086  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Cerminati, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina  
dc.description.fil
Fil: Leroux, Melanie. Universite Grenoble Alpes.; Francia  
dc.description.fil
Fil: Anselmi, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina  
dc.description.fil
Fil: Peirú, Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina  
dc.description.fil
Fil: Alonso, Juan Carlos. Universidad Autónoma de Madrid; España. Consejo Superior de Investigaciones Científicas. Centro Nacional de Biotecnología; España  
dc.description.fil
Fil: Priem, Bernard. Universite Grenoble Alpes.; Francia  
dc.description.fil
Fil: Menzella, Hugo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina  
dc.journal.title
Applied Microbiology and Biotechnology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00253-021-11246-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00253-021-11246-6