Mostrar el registro sencillo del ítem
dc.contributor.author
Zumoffen, David Alejandro Ramon
dc.contributor.author
Braccia, Lautaro
dc.contributor.author
Luppi, Patricio Alfredo
dc.date.available
2023-01-25T10:48:21Z
dc.date.issued
2019-04
dc.identifier.citation
Zumoffen, David Alejandro Ramon; Braccia, Lautaro; Luppi, Patricio Alfredo; Data-driven plant-wide control performance monitoring; American Chemical Society; Industrial & Engineering Chemical Research; 58; 16; 4-2019; 6576-6591
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/185498
dc.description.abstract
In this work a new data-driven plant-wide control performance monitoring methodology is proposed. The main constitutive parts of the suggested method are based on three well-known research areas from process systems engineering (PSE): (1) the sum of squared deviations (SSD) concepts from the plant-wide control design topic, (2) the partial least-squares (PLS) modeling technique from the multivariate statistics area, and (3) the covariance-based performance index and diagnosis (CID) from the control performance monitoring field. All these approaches are integrated and reformulated in the current work to perform a MIMO control structure performance/feasibility assessment, an open-loop steady-state model identification by using closed-loop normal data, and a covariance-based procedure for diagnosis purposes. This strategy requires minimum interference with the industrial process operation and generates valuable information (off-line as well as on-line) to evaluate the already installed control policy and suggest potential control structure modifications and/or potential controller retuning. Two typical case studies are proposed to analyze the scope of the suggested approach.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONTROL PERFORMANCE MONITORING
dc.subject
DATA-DRIVEN
dc.subject
PLANT-WIDE CONTROL
dc.subject
RECURSIVE PLS
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Data-driven plant-wide control performance monitoring
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-17T18:37:18Z
dc.journal.volume
58
dc.journal.number
16
dc.journal.pagination
6576-6591
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Braccia, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Luppi, Patricio Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.iecr.8b06293
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.iecr.8b06293
Archivos asociados