Mostrar el registro sencillo del ítem

dc.contributor.author
Videla, María Eugenia  
dc.contributor.author
Iglesias, Juliana  
dc.contributor.author
Bruno, Cecilia Ines  
dc.date.available
2023-01-23T14:47:12Z  
dc.date.issued
2021-10  
dc.identifier.citation
Videla, María Eugenia; Iglesias, Juliana; Bruno, Cecilia Ines; Relative performance of cluster algorithms and validation indices in maize genome-wide structure patterns; Springer; Euphytica; 217; 10; 10-2021; 1-19  
dc.identifier.issn
0014-2336  
dc.identifier.uri
http://hdl.handle.net/11336/185276  
dc.description.abstract
A number of clustering algorithms are available to depict population genetic structure (PGS) with genomic data; however, there is no consensus on which methods are the best performing ones. We conducted a simulation study of three PGS scenarios with subpopulations k = 2, 5 and 10, recreating several maize genomes as a model to: (1) compare three well-known clustering methods: UPGMA, k-means and, Bayesian method (BM); (2) asses four internal validation indices: CH, Connectivity, Dunn and Silhouette, to determine the reliable number of groups defining a PGS; and (3) estimate the misclassification rate for each validation index. Moreover, a publicly available maize dataset was used to illustrate the outcomes of our simulation. BM was the best method to classify individuals in all tested scenarios, without assignment errors. Conversely, UPGMA was the method with the highest misclassification rate. In scenarios with 5 and 10 subpopulations, CH and Connectivity indices had the maximum underestimation of group number for all cluster algorithms. Dunn and Silhouette indices showed the best performance with BM. Nevertheless, since Silhouette measures the degree of confidence in cluster assignment, and BM measures the probability of cluster membership, these results should be considered with caution. In this study we found that BM showed to be efficient to depict the PGS in both simulated and real maize datasets. This study offers a robust alternative to unveil the existing PGS, thereby facilitating population studies and breeding strategies in maize programs. Moreover, the present findings may have implications for other crop species.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MAIZE  
dc.subject
MULTIVARIATE TECHNIQUE  
dc.subject
OUTCOME MISCLASSIFICATION  
dc.subject
POPULATION GENETIC STRUCTURE  
dc.subject
SNPS  
dc.subject
UNSUPERVISED LEARNING  
dc.subject.classification
Otras Biotecnología Agropecuaria  
dc.subject.classification
Biotecnología Agropecuaria  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Relative performance of cluster algorithms and validation indices in maize genome-wide structure patterns  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T15:06:05Z  
dc.identifier.eissn
1573-5060  
dc.journal.volume
217  
dc.journal.number
10  
dc.journal.pagination
1-19  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Videla, María Eugenia. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Matemáticas. Cátedra de Estadística y Biometría; Argentina. Universidad Nacional de Villa María; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina  
dc.description.fil
Fil: Iglesias, Juliana. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Matemáticas. Cátedra de Estadística y Biometría; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina  
dc.journal.title
Euphytica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10681-021-02926-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10681-021-02926-5