Mostrar el registro sencillo del ítem
dc.contributor.author
Guarda, Jaime
dc.contributor.author
Valente, Mauro Andres

dc.contributor.author
Figueroa, Rodolfo
dc.date.available
2023-01-20T14:05:34Z
dc.date.issued
2021-02
dc.identifier.citation
Guarda, Jaime; Valente, Mauro Andres; Figueroa, Rodolfo; Development and characterisation of a confocal detection array for K-lines of heavy metals in big light matrix; Pergamon-Elsevier Science Ltd; Radiation Physics and Chemistry (Oxford); 179; 2-2021; 1-11
dc.identifier.issn
0969-806X
dc.identifier.uri
http://hdl.handle.net/11336/185122
dc.description.abstract
In this work we describe and simulate a setup which allows the X-ray Fluorescence (XRF) detection of gold nanoparticles (GNPs) excited by a convergent orthovoltage X-ray source, immersed in a big matrix of light elements (water). Under these conditions the problem is the poor Signal-to-Noise Ratio (SNR), which under normal irradiation conditions limit the detection of the GNPs. For the X-ray source (Teledyne CP120B) multiple calculations using SpekCalc software were run to determine an optimum external filtering thickness and collimation material, where was found that 1 mm of Cu external filtering improves the ratio and quantity of useful photons above the Au K-edge absorption energy. Monte Carlo (PENELOPE v2008) simulations were performed using the confocal geometry. The scenarios, including the composition (lead and bronze alloys), shape (cylindrical, conical) and location of the detectors were defined. Using a set of combinations for collimators in the X-ray source and detectors, where both are aligned to a unique focal point, it was possible to increase the SNR of the XRF signal with respect to Compton radiation in a specific region within the phantom, which makes possible to identify the location of the GNPs. The best SNR (185%) was achieved using a 4 cm length conical collimator made of lead. This would allow the development of a new technique for functional medical imaging, and according with the outcome of these simulations, in subsequent stages a prototype will be developed to validate the simulation outcomes, and confirm that it is possible to detect the location of GNPs from a human scale phantom based on their fluorescent emission.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COMPTON SCATTERING
dc.subject
CONFOCAL DETECTION
dc.subject
CONVERGENT BEAM
dc.subject
ENERGY DISPERSIVE X-RAY FLUORESCENCE
dc.subject
GOLD NANOPARTICLES
dc.subject.classification
Física Atómica, Molecular y Química

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Development and characterisation of a confocal detection array for K-lines of heavy metals in big light matrix
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-22T10:36:58Z
dc.identifier.eissn
1879-0895
dc.journal.volume
179
dc.journal.pagination
1-11
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Guarda, Jaime. Universidad de La Frontera; Chile
dc.description.fil
Fil: Valente, Mauro Andres. Universidad de La Frontera; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
dc.description.fil
Fil: Figueroa, Rodolfo. Universidad de La Frontera; Chile
dc.journal.title
Radiation Physics and Chemistry (Oxford)

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0969806X20303881?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.radphyschem.2020.109116
Archivos asociados