Mostrar el registro sencillo del ítem

dc.contributor.author
Vignatti, María Amelia  
dc.contributor.author
Salinas, Oscar Mario  
dc.contributor.author
Hartzstein, Silvia Inés  
dc.date.available
2023-01-19T15:06:29Z  
dc.date.issued
2020-11  
dc.identifier.citation
Vignatti, María Amelia; Salinas, Oscar Mario; Hartzstein, Silvia Inés; Two-weighted inequalities for maximal operators related to Schrödinger differential operators; De Gruyter; Forum Mathematicum; 32; 6; 11-2020; 1415-1439  
dc.identifier.issn
0933-7741  
dc.identifier.uri
http://hdl.handle.net/11336/185031  
dc.description.abstract
We introduce classes of pairs of weights closely related to Schrödinger operators, which allow us to get two-weight boundedness results for the Schrödinger fractional integral and its commutators. The techniques applied in the proofs strongly rely on one hand, boundedness results in the setting of finite measure spaces of homogeneous type and, on the other hand, Fefferman-Stein-type inequalities that connect maximal operators naturally associated to Schrödinger operators.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BOUNDEDNESS  
dc.subject
FRACTIONAL  
dc.subject
WEIGHTS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Two-weighted inequalities for maximal operators related to Schrödinger differential operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-20T10:49:45Z  
dc.journal.volume
32  
dc.journal.number
6  
dc.journal.pagination
1415-1439  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Vignatti, María Amelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina  
dc.journal.title
Forum Mathematicum  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/forum-2019-0243/html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/forum-2019-0243