Artículo
Screening and identification of metacaspase inhibitors: Evaluation of inhibition mechanism and trypanocidal activity
Perez, Brian Daniel
; Bouvier, León Alberto
; Cazzulo, Juan Jose
; Agüero, Fernan Gonzalo
; Salas Sarduy, Emir
; Alvarez, Vanina Eder
Fecha de publicación:
02/2021
Editorial:
American Society for Microbiology
Revista:
Antimicrobial Agents and Chemotherapy
ISSN:
0066-4804
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A common strategy to identify new antiparasitic agents is the targeting of proteases, due to their essential contributions to parasite growth and development. Metacaspases (MCAs) are cysteine proteases present in fungi, protozoa, and plants. These enzymes, which are associated with crucial cellular events in trypanosomes, are absent in the human host, thus arising as attractive drug targets. To find new MCA inhibitors with trypanocidal activity, we adapted a continuous fluorescence enzymatic assay to a medium-throughput format and carried out screening of different compound collections, followed by the construction of dose-response curves for the most promising hits. We used MCA5 from Trypanosoma brucei (TbMCA5) as a model for the identification of inhibitors from the GlaxoSmithKline HAT and CHAGAS chemical boxes. We also assessed a third collection of nine compounds from the Maybridge database that had been identified by virtual screening as potential inhibitors of the cysteine peptidase falcipain-2 (clan CA) from Plasmodium falciparum. Compound HTS01959 (from the Maybridge collection) was the most potent inhibitor, with a 50% inhibitory concentration (IC50) of 14.39mM; it also inhibited other MCAs from T. brucei and Trypanosoma cruzi (TbMCA2, 4.14mM; TbMCA3, 5.04mM; TcMCA5, 151mM). HTS01959 behaved as a reversible, slow-binding, and noncompetitive inhibitor of TbMCA2, with a mechanism of action that included redox components. Importantly, HTS01959 displayed trypanocidal activity against bloodstream forms of T. brucei and trypomastigote forms of T. cruzi, without cytotoxic effects on Vero cells. Thus, HTS01959 is a promising starting point to develop more specific and potent chemical structures to target MCAs.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Perez, Brian Daniel; Bouvier, León Alberto; Cazzulo, Juan Jose; Agüero, Fernan Gonzalo; Salas Sarduy, Emir; et al.; Screening and identification of metacaspase inhibitors: Evaluation of inhibition mechanism and trypanocidal activity; American Society for Microbiology; Antimicrobial Agents and Chemotherapy; 65; 3; 2-2021; 1-14
Compartir
Altmétricas