Mostrar el registro sencillo del ítem

dc.contributor.author
Bridges, N. T.  
dc.contributor.author
Spagnuolo, Mauro Gabriel  
dc.contributor.author
de Silva, S. L.  
dc.contributor.author
Zimbelman, J. R.  
dc.contributor.author
Neely, E. M.  
dc.date.available
2017-06-19T21:03:38Z  
dc.date.issued
2015-06  
dc.identifier.citation
Bridges, N. T.; Spagnuolo, Mauro Gabriel; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.; Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments; Elsevier Science; Aeolian Research; 17; 6-2015; 49-60  
dc.identifier.issn
1875-9637  
dc.identifier.uri
http://hdl.handle.net/11336/18486  
dc.description.abstract
Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ripples  
dc.subject
Puna  
dc.subject
Mars  
dc.subject
Wind Tunnel  
dc.subject.classification
Geociencias multidisciplinaria  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-19T17:27:01Z  
dc.journal.volume
17  
dc.journal.pagination
49-60  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bridges, N. T.. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Spagnuolo, Mauro Gabriel. State University of Oregon; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: de Silva, S. L.. State University of Oregon; Estados Unidos  
dc.description.fil
Fil: Zimbelman, J. R.. National Air and Space Museum; Estados Unidos  
dc.description.fil
Fil: Neely, E. M.. State University of Oregon; Estados Unidos. Portland State University; Estados Unidos  
dc.journal.title
Aeolian Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aeolia.2015.01.007  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1875963715000117