Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Alternative formalism for the evaluation of the activity coefficients on ternary electrolyte solutions from osmotic coefficient data

Passamonti, Francisco JavierIcon ; Gennero, Maria RosaIcon ; Chialvo, Abel CesarIcon
Fecha de publicación: 11/2021
Editorial: Elsevier Science
Revista: Fluid Phase Equilibria
ISSN: 0378-3812
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

An alternative method is presented, which is independent of any physicochemical model of the electrolyte solution, for the evaluation of the mean ionic activity coefficient in molal scale, γ±i (i: 2,3), of the solutes of a ternary solution (1–2–3), starting from experimental data of the osmotic coefficient on composition ϕexp(m,xi). It is based on the dependence of ln γ±i on ϕ originally derived by H.A.C. McKay and confirmed by S.G. Canagaratna and M. Maheswaran as a particular solution of Gibbs-Duhem equation for multicomponent systems. Its application involves the integration of both ϕ and its derivative ∂ϕ/∂mi, so that it requires a very precise correlation of the dependence ϕexp(m,xi). Therefore, in order to achieve the required precision, the theoretical expression ϕ(m,xi) is developed as the sum of three contributions, (i) ϕDH: the limiting behaviour given by the Debye-Hückel equation for multicomponent systems, (ii) ΔϕDDH: the sum of the deviations to the Debye-Hückel behaviour of the corresponding binary solutions (1–2 and 1–3) and (iii) ΔϕM: a contribution of mixing effect. Finally, introducing the resulting ϕ(m,xi) into the Gibbs-Duhem equation and operating, the corresponding expression of ln γ±i (m,xi) is derived. The capacity of the ϕ(m,xi) equation to correlate the dependence ϕexp(m,xi), the methodology employed to obtain the parameters values, as well as the ln γ±i (m,xi) resulting dependence are illustrated through its application to the analysis of two ternary systems.
Palabras clave: MEAN IONIC ACTIVITY COEFFICIENTS , OSMOTIC COEFFICIENT , TERNARY ELECTROLYTE SOLUTIONS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.807Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184865
URL: https://linkinghub.elsevier.com/retrieve/pii/S0378381221002314
DOI: http://dx.doi.org/10.1016/j.fluid.2021.113169
Colecciones
Articulos(INCAPE)
Articulos de INST.DE INVEST.EN CATALISIS Y PETROQUIMICA "ING. JOSE MIGUEL PARERA"
Citación
Passamonti, Francisco Javier; Gennero, Maria Rosa; Chialvo, Abel Cesar; Alternative formalism for the evaluation of the activity coefficients on ternary electrolyte solutions from osmotic coefficient data; Elsevier Science; Fluid Phase Equilibria; 547; 11-2021; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES