Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Computational Intelligence for Process-optimization Software

Oteiza, Paola PatriciaIcon ; Ardenghi, Juan IgnacioIcon ; Brignole, Nélida BeatrizIcon
Tipo del evento: Simposio
Nombre del evento: 30th Symposium on Computer Aided Process Engineering
Fecha del evento: 31/08/2020
Institución Organizadora: Associazione Italiana Di Ingegneria Chimica;
Título del Libro: 30th Symposium on Computer Aided Process Engineering
Editorial: Elsevier
ISBN: 9780128233771
Idioma: Inglés
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

This work describes a general algorithm for a cooperative hyper-heuristics that enables the optimization of systems of nonlinear algebraic equations with algebraic constraints. The hyper-heuristics comprises the following agents: Genetic Algorithms, Simulated Annealing and Particle Swarm Optimization. Information exchanges take place effectively among them since the immediate incorporation of solution candidates speeds up the search. Algorithmic performance is illustrated with general test models, most of them corresponding to process systems that have currently been employed in PSE. When running in parallel, numerical results demonstrate that the collaborative hybrid structure with embedded intelligent learning contributes to improve results in terms of effectiveness and accuracy. The combination of several heuristic optimization approaches into a hyper-heuristics provides enhanced benefits over traditional strategies since this method helps to find proper comprehensive solutions, also contributing to achieve and accelerate convergence.
Palabras clave: OPTIMIZATION , META-HEURISTICS , HYPER-HEURISTICS , PARALLEL PROGRAMMING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.065Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184777
DOI: https://doi.org/10.1016/B978-0-12-823377-1.50291-3
URL: https://www.sciencedirect.com/science/article/abs/pii/B9780128233771502913
Colecciones
Eventos(PLAPIQUI)
Eventos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Computational Intelligence for Process-optimization Software; 30th Symposium on Computer Aided Process Engineering; Milano; Italia; 2020; 1741-1746
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES