Evento
Model distribution dependant complexity estimation on textures
Tipo del evento:
Simposio
Nombre del evento:
6th International Symposium on Visual Computing
Fecha del evento:
29/11/2010
Institución Organizadora:
University of Nevada;
Título del Libro:
Advances in Visual Computing
Editorial:
Springer Verlag Berlín
ISBN:
978-3-642-17276-2
Idioma:
Inglés
Clasificación temática:
Resumen
On this work a method for the complexity of a textured image to be estimated is presented. The method allow to detect changes on its stationarity by means of the complexity with respect to a given model set (distribution dependant). That detection is done in such a way that also allows to classify textured images according to the whole texture complexity. When different models are used to model data, the more complex model is expected to fit it better because of the higher degree of freedom. Thus, a naturally-arisen penalization on the model complexity is used in a Bayesian context. Here a nested models scheme is used to improve the robustness and efficiency on the implementation. Even when MRF models are used for the sake of clarity, the procedure it is not subject to a particular distribution.
Palabras clave:
COMPLEXITY
,
TEXTURED IMAGES
,
CLASSIFICATION
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Model distribution dependant complexity estimation on textures; 6th International Symposium on Visual Computing; Las Vegas; Estados Unidos; 2010; 371-279
Compartir
Altmétricas