Artículo
Electron self-energy from quantum charge fluctuations in the layered model with long-range Coulomb interaction
Fecha de publicación:
07/2021
Editorial:
American Physical Society
Revista:
Physical Review B
ISSN:
2469-9950
e-ISSN:
2469-9969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Employing a large- scheme of the layered model with the long-range Coulomb interaction, which captures the fine details of the charge excitation spectra recently observed in cuprate superconductors, we explore the role of charge fluctuations on the electron self-energy. We fix the temperature at zero and focus on quantum charge fluctuations. We find a pronounced asymmetry of the imaginary part of the self-energy with respect to , which is driven by strong electron correlation effects. The quasiparticle weight is reduced dramatically, which occurs almost isotropically along the Fermi surface. Concomitantly, an incoherent band and a sharp side band are generated and acquire sizable spectral weight. All these features are driven by the usual on-site charge fluctuations, which are realized in a rather high-energy region and yield plasmon excitations. On the other hand, the low-energy region with the scale of the superexchange interaction is dominated by bond-charge fluctuations. Surprisingly, compared with the effect of on-site charge fluctuations, their effect on the electron self-energy is much weaker, even if the system approaches close to bond-charge instabilities. Furthermore, quantum charge dynamics does not produce a clear kink nor a pseudogap in the electron dispersion.
Palabras clave:
ELECTRONIC STRUCTURE
,
CUPRATES
,
T-J MODEL
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Yamase, Hiroyuki; Bejas, Matias Hector; Greco, Andres Francisco; Electron self-energy from quantum charge fluctuations in the layered model with long-range Coulomb interaction; American Physical Society; Physical Review B; 104; 4; 7-2021; 1-53
Compartir
Altmétricas