Artículo
The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect
Ueno, Andrea Celeste
; Gundel, Pedro Emilio
; Seal, Charlotte E.; Ghersa, Claudio Marco
; Martinez-Ghersa, Maria Alejandra
Fecha de publicación:
07/2020
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Environmental and Experimental Botany
ISSN:
0098-8472
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The transition from mother plant seed production to seedlings recruitment is critical for annual plant species but also for vertically transmitted microbial symbionts. Evidence indicates that microbial symbionts play important roles in plant response to environmental changes. However, their role in plant facing gaseous tropospheric pollutants such as the highly reactive and phytotoxic ozone, have been scarcely studied. Here, we experimentally tested the consequences of maternal plant exposure to ozone on the longevity of Lolium mutiflorum seeds mediated by a vertically-transmitted fungal endophyte (Epichloë occultans). Seeds were produced by mother plants exposed to contrasting levels of ozone (low and high concentrations) in two phases of the life cycle (vegetative and reproductive). We first characterized the consequences of plant exposure to ozone on the state of the antioxidant glutathione in the seeds. Then, we examined viability dynamics of the seeds through an accelerated ageing trial and followed the physiological variables seed water content (SWC) and electrical conductivity (EC). Irrespectively of maternal ozone, seeds produced by endophyte-symbiotic plants presented higher contents of the oxidised form of glutathione. In the same direction, the fungal endophyte presence was associated with a dramatic reduction in seed longevity. The SWC was higher in endophyte-symbiotic seeds that in endophyte-free seeds. As time under accelerated ageing condition advanced, EC increased more in endophyte-symbiotic seeds than in endophyte-free seeds. Mother plant exposure to ozone tended to have a negative synergistic effect with the endophyte symbiosis. Ozone transgenerational effect was not detected on endophyte-free seeds. Our work contributes to understand the transgenerational effects of vertically transmitted fungal endophytes in plants in response to a currently important factor of stress.
Palabras clave:
EPICHLOË OCCULTANS
,
ITALIAN RYEGRASS
,
LOLIUM MULTIFLORUM
,
MATERNAL EFFECT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Ueno, Andrea Celeste; Gundel, Pedro Emilio; Seal, Charlotte E.; Ghersa, Claudio Marco; Martinez-Ghersa, Maria Alejandra; The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect; Pergamon-Elsevier Science Ltd; Environmental and Experimental Botany; 175; 7-2020; 1-8
Compartir
Altmétricas