Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning

Wilf, Peter; Wing, Scott L.; Meyer, Herbert W.; Rose, Jacob A.; Saha, Rohit; Serre, Thomas; Cúneo, Néstor RubénIcon ; Donovan, Michael P.; Erwin, Diane M.; Gandolfo, María A.; González Akre, Erika; Herrera, Fabiany; Hu, Shusheng; Iglesias, AriIcon ; Johnson, Kirk R.; Karim, Talia S.; Zou, Xiaoyu
Fecha de publicación: 12/2021
Editorial: Pensoft Publishers
Revista: PhytoKeys
ISSN: 1314-2003
e-ISSN: 1314-2011
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Paleontología

Resumen

Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology, Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.
Palabras clave: ANGIOSPERMS , CLEARED LEAVES , DATA SCIENCE , FOSSIL LEAVES , LEAF ARCHITECTURE , PALEOBOTANY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.331Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184093
URL: https://phytokeys.pensoft.net/article/72350/
DOI: http://dx.doi.org/10.3897/phytokeys.187.72350
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Wilf, Peter; Wing, Scott L.; Meyer, Herbert W.; Rose, Jacob A.; Saha, Rohit; et al.; An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning; Pensoft Publishers; PhytoKeys; 187; 12-2021; 93-128
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES