Mostrar el registro sencillo del ítem

dc.contributor.author
de Avila Ferreira, T.  
dc.contributor.author
Wuillemin, Z.  
dc.contributor.author
Marchetti, Alejandro Gabriel  
dc.contributor.author
Salzmann, C.  
dc.contributor.author
Van Herle, J.  
dc.contributor.author
Bonvin, D.  
dc.date.available
2023-01-10T10:55:14Z  
dc.date.issued
2019-07  
dc.identifier.citation
de Avila Ferreira, T.; Wuillemin, Z.; Marchetti, Alejandro Gabriel; Salzmann, C.; Van Herle, J.; et al.; Real-time optimization of an experimental solid-oxide fuel-cell system; Elsevier Science; Journal of Power Sources; 429; 7-2019; 168-179  
dc.identifier.issn
0378-7753  
dc.identifier.uri
http://hdl.handle.net/11336/184047  
dc.description.abstract
There still exists a large gap between simulation work and industrial applications in the context of control and optimization of solid-oxide fuel-cell (SOFC) systems. In an effort to bridge this gap, this study describes the experimental implementation of steady-state real-time optimization (RTO) to an SOFC system that consists of both hardware and software components. The proposed adaptive optimization scheme uses an approximate steady-state model of the fuel-cell system and corrects it “appropriately” so that it becomes “excellent” for optimization. This way, the plant can be steered efficiently toward optimality, while meeting the varying electric power demand. In these experiments, the plant efficiency was increased from 55% to 62% through application of RTO. Furthermore, although the SOFC system is characterized by slow thermal dynamics that may take a few hours to settle to steady state, it has been possible to reduce the time necessary to reach the power setpoint from 1 h to about 5 min thanks to the use of transient measurements and a dynamic model. This experimental work has shown that it is possible, not only to control the SOFC system at a desired operating point, but also to operate it near optimality despite changes in power demand.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONSTRAINT ADAPTATION  
dc.subject
PLANT-MODEL MISMATCH  
dc.subject
REAL-TIME OPTIMIZATION  
dc.subject
SOFC SYSTEM  
dc.subject
TRANSIENT MEASUREMENTS  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Real-time optimization of an experimental solid-oxide fuel-cell system  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-17T18:38:52Z  
dc.journal.volume
429  
dc.journal.pagination
168-179  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: de Avila Ferreira, T.. Ecole Polytechnique Federale de Lausanne; Francia  
dc.description.fil
Fil: Wuillemin, Z.. No especifíca;  
dc.description.fil
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Salzmann, C.. Ecole Polytechnique Federale de Lausanne; Francia  
dc.description.fil
Fil: Van Herle, J.. Ecole Polytechnique Federale de Lausanne; Francia  
dc.description.fil
Fil: Bonvin, D.. Ecole Polytechnique Federale de Lausanne; Francia  
dc.journal.title
Journal of Power Sources  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jpowsour.2019.03.025