Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Statistical models of yield in on-farm precision experimentation

Paccioretti, Pablo ArielIcon ; Bruno, Cecilia InesIcon ; Giannini Kurina, FrancaIcon ; Córdoba, MarianoIcon ; Bullock, David; Balzarini, Monica GracielaIcon
Fecha de publicación: 11/2021
Editorial: American Society of Agronomy
Revista: Agronomy Journal
ISSN: 0002-1962
e-ISSN: 1435-0645
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

On-farm precision experimentation (OFPE) is increasingly conducted using variable-rate technology and precision agriculture (PA) equipment to measure the effect of changes in input application rates on yields and profits at specific fields. Classical linear regression models and new Bayesian and machine learning regressions for spatial data can be used to investigate site-specific crop response from georeferenced data. The objective of this work was to compare statistical models that can be used by researchers analyzing OFPE data to estimate crop response and better describe its spatial within-field variability. Three statistical models estimating the responses to N rates, seed rates, and site-specific soil properties from eight OFPEs were compared: (a) linear regression (LR) for spatially correlated errors, (b) Bayesian regression (BR) with random site effects, and (c) random forest regression (RF) with kriged residuals. Models were adjusted to account for spatial variation in yield response, and with and without field characteristic covariates. Modeling spatial correlation and including plot covariates improved yield predictions. Differences among methods proved to be indistinguishable with respect to average explained variance, correlation between predicted and observed values, and mean square prediction errors (PEs). However, BR and RF outperformed LR in site-specific prediction accuracy, with BR predictions having lower predictive uncertainty than RF predictions. The hierarchical Bayesian model for spatial data is a useful tool to process OFPE data, allowing direct derivation of linear coefficients and prediction uncertainty measures related to site-specific yield responses.
Palabras clave: PRECISION AGRICULTURE , LINEAR MIXED MODELS , SPATIAL BAYESIAN MODELS , RANDOM FOREST REGRESSION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.493Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184015
DOI: http://dx.doi.org/10.1002/agj2.20833
URL: https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.20833
Colecciones
Articulos (UFYMA)
Articulos de UNIDAD DE FITOPATOLOGIA Y MODELIZACION AGRICOLA
Citación
Paccioretti, Pablo Ariel; Bruno, Cecilia Ines; Giannini Kurina, Franca; Córdoba, Mariano; Bullock, David; et al.; Statistical models of yield in on-farm precision experimentation; American Society of Agronomy; Agronomy Journal; 113; 6; 11-2021; 4916-4929
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES