Mostrar el registro sencillo del ítem

dc.contributor.author
Capella, Matias  
dc.contributor.author
Mandemaker, Imke K.  
dc.contributor.author
Martín Caballero, Lucía  
dc.contributor.author
den Brave, Fabian  
dc.contributor.author
Pfander, Boris  
dc.contributor.author
Ladurner, Andreas G.  
dc.contributor.author
Jentsch, Stefan  
dc.contributor.author
Braun, Sigurd  
dc.date.available
2023-01-09T18:33:19Z  
dc.date.issued
2021-08  
dc.identifier.citation
Capella, Matias; Mandemaker, Imke K.; Martín Caballero, Lucía; den Brave, Fabian; Pfander, Boris; et al.; Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase; Nature Publishing Group; Nature Communications; 12; 1; 8-2021; 1-16  
dc.identifier.issn
2041-1723  
dc.identifier.uri
http://hdl.handle.net/11336/183992  
dc.description.abstract
Ribosomal RNA genes (rDNA) are highly unstable and susceptible to rearrangement due to their repetitive nature and active transcriptional status. Sequestration of rDNA in the nucleolus suppresses uncontrolled recombination. However, broken repeats must be first released to the nucleoplasm to allow repair by homologous recombination. Nucleolar release of broken rDNA repeats is conserved from yeast to humans, but the underlying molecular mechanisms are currently unknown. Here we show that DNA damage induces phosphorylation of the CLIP-cohibin complex, releasing membrane-tethered rDNA from the nucleolus in Saccharomyces cerevisiae. Downstream of phosphorylation, SUMOylation of CLIP-cohibin is recognized by Ufd1 via its SUMO-interacting motif, which targets the complex for disassembly through the Cdc48/p97 chaperone. Consistent with a conserved mechanism, UFD1L depletion in human cells impairs rDNA release. The dynamic and regulated assembly and disassembly of the rDNA-tethering complex is therefore a key determinant of nucleolar rDNA release and genome integrity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ribosomal DNA  
dc.subject
Genome stability  
dc.subject
DNA damage  
dc.subject
Saccharomyces cerevisiae  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T16:17:52Z  
dc.journal.volume
12  
dc.journal.number
1  
dc.journal.pagination
1-16  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Capella, Matias. Max Planck Institute Of Biochemistry.; Alemania. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mandemaker, Imke K.. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Martín Caballero, Lucía. Ludwig Maximilians Universitat; Alemania. International Max Planck Research School For Molecular Life Sciences: From Biological Structures To Neural Circuits; Alemania  
dc.description.fil
Fil: den Brave, Fabian. Max-planck-institut Für Biochemie; Alemania. Universitat Bonn; Alemania  
dc.description.fil
Fil: Pfander, Boris. International Max Planck Research School For Molecular Life Sciences: From Biological Structures To Neural Circuits; Alemania. Max-planck-institut Für Biochemie; Alemania  
dc.description.fil
Fil: Ladurner, Andreas G.. International Max Planck Research School For Molecular Life Sciences: From Biological Structures To Neural Circuits; Alemania. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Jentsch, Stefan. Max-planck-institut Für Biochemie; Alemania  
dc.description.fil
Fil: Braun, Sigurd. Ludwig Maximilians Universitat; Alemania. Justus-liebig-universität Giessen; Alemania. International Max Planck Research School For Molecular Life Sciences: From Biological Structures To Neural Circuits; Alemania  
dc.journal.title
Nature Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-021-25205-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41467-021-25205-2