Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The MeSsI (merging systems identification) algorithm and catalogue

De Los Rios, Martín; Dominguez, Mariano; Paz, Dante JavierIcon ; Merchan, Manuel EnriqueIcon
Fecha de publicación: 11/03/2016
Editorial: Wiley Blackwell Publishing, Inc
Revista: Monthly Notices of the Royal Astronomical Society
ISSN: 0035-8711
e-ISSN: 1365-2966
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Merging galaxy systems provide observational evidence of the existence of dark matter and constraints on its properties. Therefore, statistically uniform samples of merging systems would be a powerful tool for several studies. In this paper, we present a new methodology for the identification of merging systems and the results of its application to galaxy redshift surveys.We use as a starting point amock catalogue of galaxy systems, identified using friendsof- friends algorithms, that have experienced a major merger, as indicated by its merger tree. By applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups that have a high probability of having experienced a major merger. Next, we apply a mixture of Gaussian techniques on galaxy members in order to reconstruct the properties of the haloes involved in such mergers. This methodology provides a highly reliable sample of merging systems with low contamination and precisely recovered properties. We apply our techniques to samples of galaxy systems obtained from the Sloan Digital Sky Survey Data Release 7, theWide-Field Nearby Galaxy-Cluster Survey (WINGS) and the Hectospec Cluster Survey (HeCS). Our results recover previously known merging systems and provide several new candidates. We present their measured properties and discuss future analysis on current and forthcoming samples.
Palabras clave: DARK MATTER , GALAXIES: CLUSTERS: GENERAL , GALAXIES: KINEMATICS AND DYNAMICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 970.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/183601
DOI: http://dx.doi.org/10.1093/mnras/stw215
Colecciones
Articulos(IATE)
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Citación
De Los Rios, Martín; Dominguez, Mariano; Paz, Dante Javier; Merchan, Manuel Enrique; The MeSsI (merging systems identification) algorithm and catalogue; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 458; 1; 11-3-2016; 226-232
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES