Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Extreme Learning Machine Design for Dealing with Unrepresentative Features

Nieto, NicolásIcon ; Ibarrola, Francisco JavierIcon ; Peterson, VictoriaIcon ; Rufiner, Hugo LeonardoIcon ; Spies, Ruben DanielIcon
Fecha de publicación: 2021
Editorial: Humana Press
Revista: Neuroinformatics
ISSN: 1539-2791
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

Extreme Learning Machines (ELMs) have become a popular tool for the classification of electroencephalography (EEG) signals for Brain Computer Interfaces. This is so mainly due to their very high training speed and generalization capabilities. Another important advantage is that they have only one hyperparameter that must be calibrated: the number of hidden nodes. While most traditional approaches dictate that this parameter should be chosen smaller than the number of available training examples, in this article we argue that, in the case of problems in which the data contain unrepresentative features, such as in EEG classification problems, it is beneficial to choose a much larger number of hidden nodes. We characterize this phenomenon, explain why this happens and exhibit several concrete examples to illustrate how ELMs behave. Furthermore, as searching for the optimal number of hidden nodes could be time consuming in enlarged ELMs, we propose a new training scheme, including a novel pruning method. This scheme provides an efficient way of finding the optimal number of nodes, making ELMs more suitable for dealing with real time EEG classification problems. Experimental results using synthetic data and real EEG data show a major improvement in the training time with respect to most traditional and state of the art ELM approaches, without jeopardising classification performance and resulting in more compact networks.
Palabras clave: BRAIN COMPUTER INTERFACES , BRAIN PATTERN RECOGNITION , ELECTROENCEPHALOGRAPHY , PRUNING , UNREPRESENTATIVE FEATURES
Ver el registro completo
 
Archivos asociados
Tamaño: 3.548Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/183571
DOI: http://dx.doi.org/10.1007/s12021-021-09541-8
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Nieto, Nicolás; Ibarrola, Francisco Javier; Peterson, Victoria; Rufiner, Hugo Leonardo; Spies, Ruben Daniel; Extreme Learning Machine Design for Dealing with Unrepresentative Features; Humana Press; Neuroinformatics; 20; 3; 2021; 641-650
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES