Mostrar el registro sencillo del ítem
dc.contributor.author
Fuster, Valeria de Los Angeles
dc.contributor.author
Gómez Cortés, José F.
dc.contributor.author
Nó, María L.
dc.contributor.author
San Juan, José María
dc.date.available
2023-01-05T14:27:51Z
dc.date.issued
2020-02
dc.identifier.citation
Fuster, Valeria de Los Angeles; Gómez Cortés, José F.; Nó, María L. ; San Juan, José María; Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices; Blackwell Publishing; Advanced Electronic Materials; 6; 2; 2-2020; 1-7
dc.identifier.issn
2199-160X
dc.identifier.uri
http://hdl.handle.net/11336/183520
dc.description.abstract
Shape-memory alloys (SMAs) are the most stretchable metallic materials thanks to their superelastic behavior associated with the stress-induced martensitic transformation. This property makes SMAs of potential interest for flexible and wearable electronic technologies, provided that their properties will be retained at small scale. Nanocompression experiments on Cu-Al-Be SMA single crystals demonstrate that micro- and nanopillars, between 2 µm and 260 nm in diameter, exhibit a reproducible superelastic behavior fully recoverable up to 8% strain, even at the nanoscale. Additionally, these micro-/nanopillars exhibit a size effect on the critical stress for superelasticity, which dramatically increases for pillars smaller than ≈1 µm in diameter, scaling with a power law of exponent n = −2. The observed size effect agrees with a theoretical model of homogeneous nucleation of martensite at small scale and the universality of this scaling power law for Cu-based SMAs is proposed. These results open new directions for using SMAs as stretchable conductors and actuating devices in flexible and wearable technologies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Blackwell Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
NANOCOMPRESSION
dc.subject
SHAPE-MEMORY ALLOYS
dc.subject
SIZE EFFECTS
dc.subject
STRETCHABLE MATERIALS
dc.subject
SUPERELASTICITY
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-19T21:56:37Z
dc.journal.volume
6
dc.journal.number
2
dc.journal.pagination
1-7
dc.journal.pais
Alemania
dc.journal.ciudad
Weinheim
dc.description.fil
Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
dc.description.fil
Fil: Gómez Cortés, José F.. Universidad del País Vasco; España
dc.description.fil
Fil: Nó, María L.. Universidad del País Vasco; España
dc.description.fil
Fil: San Juan, José María. Universidad del País Vasco; España
dc.journal.title
Advanced Electronic Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900741
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/aelm.201900741
Archivos asociados