Mostrar el registro sencillo del ítem

dc.contributor.author
Fuster, Valeria de Los Angeles  
dc.contributor.author
Gómez Cortés, José F.  
dc.contributor.author
Nó, María L.  
dc.contributor.author
San Juan, José María  
dc.date.available
2023-01-05T14:27:51Z  
dc.date.issued
2020-02  
dc.identifier.citation
Fuster, Valeria de Los Angeles; Gómez Cortés, José F.; Nó, María L. ; San Juan, José María; Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices; Blackwell Publishing; Advanced Electronic Materials; 6; 2; 2-2020; 1-7  
dc.identifier.issn
2199-160X  
dc.identifier.uri
http://hdl.handle.net/11336/183520  
dc.description.abstract
Shape-memory alloys (SMAs) are the most stretchable metallic materials thanks to their superelastic behavior associated with the stress-induced martensitic transformation. This property makes SMAs of potential interest for flexible and wearable electronic technologies, provided that their properties will be retained at small scale. Nanocompression experiments on Cu-Al-Be SMA single crystals demonstrate that micro- and nanopillars, between 2 µm and 260 nm in diameter, exhibit a reproducible superelastic behavior fully recoverable up to 8% strain, even at the nanoscale. Additionally, these micro-/nanopillars exhibit a size effect on the critical stress for superelasticity, which dramatically increases for pillars smaller than ≈1 µm in diameter, scaling with a power law of exponent n = −2. The observed size effect agrees with a theoretical model of homogeneous nucleation of martensite at small scale and the universality of this scaling power law for Cu-based SMAs is proposed. These results open new directions for using SMAs as stretchable conductors and actuating devices in flexible and wearable technologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Blackwell Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
NANOCOMPRESSION  
dc.subject
SHAPE-MEMORY ALLOYS  
dc.subject
SIZE EFFECTS  
dc.subject
STRETCHABLE MATERIALS  
dc.subject
SUPERELASTICITY  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-19T21:56:37Z  
dc.journal.volume
6  
dc.journal.number
2  
dc.journal.pagination
1-7  
dc.journal.pais
Alemania  
dc.journal.ciudad
Weinheim  
dc.description.fil
Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina  
dc.description.fil
Fil: Gómez Cortés, José F.. Universidad del País Vasco; España  
dc.description.fil
Fil: Nó, María L.. Universidad del País Vasco; España  
dc.description.fil
Fil: San Juan, José María. Universidad del País Vasco; España  
dc.journal.title
Advanced Electronic Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900741  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/aelm.201900741