Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multiple-Vehicle Localization Using Maximum Likelihood Kalman Filtering and Ultra-Wideband Signals

Wang, Wenxu; Marelli, Damian EdgardoIcon ; Fu, Minyue
Fecha de publicación: 10/2020
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Sensors Journal
ISSN: 1530-437X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

In this article we study the problem of localizing a fleet of vehicles in an indoor environment using ultra-wideband (UWB) signals. This is typically done by placing a number of UWB anchors with respect to which vehicles measure their distances. The localization performance is usually poor in the vertical axis, due to the fact that anchors are often placed at similar heights. To improve accuracy, we study the use of inter-vehicle distance measurements. These measurements introduce a technical challenge, as this requires the joint estimation of positions of all vehicles, and currently available methods become numerically complex. To go around this, we use a recently proposed technique called maximum likelihood Kalman filtering (MLKF). We present experiments using real data, showing how the addition of inter-vehicle measurements improves the localization accuracy by about 60%. Experiments also show that the MLKF achieves a localization error similar to the best among available methods, while requiring only about 20% of computational time.
Palabras clave: INDOOR LOCALIZATION , INTER-VEHICLE MEASUREMENT , MAXIMUM LIKELIHOOD KALMAN FILTER , UAV , UWB
Ver el registro completo
 
Archivos asociados
Tamaño: 1.756Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/183501
DOI: http://dx.doi.org/10.1109/JSEN.2020.3031377
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Wang, Wenxu; Marelli, Damian Edgardo; Fu, Minyue; Multiple-Vehicle Localization Using Maximum Likelihood Kalman Filtering and Ultra-Wideband Signals; Institute of Electrical and Electronics Engineers; IEEE Sensors Journal; 21; 4; 10-2020; 4949-4956
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES