Mostrar el registro sencillo del ítem

dc.contributor.author
Ramírez, Lucía Soledad  
dc.contributor.author
Pasinetti, Pedro Marcelo  
dc.contributor.author
Lebrecht, W.  
dc.contributor.author
Ramirez Pastor, Antonio Jose  
dc.date.available
2023-01-03T14:20:47Z  
dc.date.issued
2021-07  
dc.identifier.citation
Ramírez, Lucía Soledad; Pasinetti, Pedro Marcelo; Lebrecht, W.; Ramirez Pastor, Antonio Jose; Standard and inverse site percolation of straight rigid rods on triangular lattices: Isotropic and perfectly oriented deposition and removal; American Physical Society; Physical Review E; 104; 1; 7-2021; 1-12  
dc.identifier.issn
2470-0045  
dc.identifier.uri
http://hdl.handle.net/11336/183164  
dc.description.abstract
Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse percolation of straight rigid rods on triangular lattices. In the case of standard percolation, the lattice is initially empty. Then, linear k-mers (particles occupying k consecutive sites along one of the lattice directions) are randomly and sequentially deposited on the lattice. In the case of inverse percolation, the process starts with an initial configuration where all lattice sites are occupied by single monomers (each monomer occupies one lattice site) and, consequently, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then the system is diluted by randomly removing sets of k consecutive monomers (linear k-mers) from the lattice. Two schemes are used for the depositing/removing process: an isotropic scheme, where the deposition (removal) of the linear objects occurs with the same probability in any lattice direction, and an anisotropic (perfectly oriented) scheme, where one lattice direction is privileged for depositing (removing) the particles. The study is conducted by following the behavior of four critical concentrations with size k: (i) [(ii)] standard isotropic[oriented] percolation threshold θc,k[ϑc,k], which represents the minimum concentration of occupied sites at which an infinite cluster of occupied nearest-neighbor sites extends from one side of the system to the other. θc,k[ϑc,k] is reached by isotropic[oriented] deposition of straight rigid k-mers on an initially empty lattice; and (iii) [(iv)] inverse isotropic[oriented] percolation threshold θc,ki[ϑc,ki], which corresponds to the maximum concentration of occupied sites for which connectivity disappears. θc,ki[ϑc,ki] is reached after removing isotropic [completely aligned] straight rigid k-mers from an initially fully occupied lattice. θc,k, ϑc,k, θc,ki, and ϑc,ki are determined for a wide range of k (2≤k≤512). The obtained results indicate that (1)θc,k[θc,ki] exhibits a nonmonotonous dependence on the size k. It decreases[increases] for small particle sizes, goes through a minimum[maximum] at around k=11, and finally increases and asymptotically converges towards a definite value for large segments θc,k→∞=0.500(2) [θc,k→∞i=0.500(1)]; (2)ϑc,k[ϑc,ki] depicts a monotonous behavior in terms of k. It rapidly increases[decreases] for small particle sizes and asymptotically converges towards a definite value for infinitely long k-mers ϑc,k→∞=0.5334(6) [ϑc,k→∞i=0.4666(6)]; (3) for both isotropic and perfectly oriented models, the curves of standard and inverse percolation thresholds are symmetric to each other with respect to the line θ(ϑ)=0.5. Thus a complementary property is found θc,k+θc,ki=1 (and ϑc,k+ϑc,ki=1) which has not been observed in other regular lattices. This condition is analytically validated by using exact enumeration of configurations for small systems, and (4) in all cases, the critical concentration curves divide the θ space in a percolating region and a nonpercolating region. These phases extend to infinity in the space of the parameter k so that the model presents percolation transition for the whole range of k.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Percolación  
dc.subject
Jamming  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Standard and inverse site percolation of straight rigid rods on triangular lattices: Isotropic and perfectly oriented deposition and removal  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-20T15:48:59Z  
dc.identifier.eissn
2470-0053  
dc.journal.volume
104  
dc.journal.number
1  
dc.journal.pagination
1-12  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Lebrecht, W.. Universidad de La Frontera; Chile  
dc.description.fil
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.journal.title
Physical Review E  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.104.014101  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.104.014101