Artículo
Exploring the quality of protein structural models from a Bayesian perspective
Fecha de publicación:
05/2021
Editorial:
John Wiley & Sons
Revista:
Journal of Computational Chemistry
ISSN:
0192-8651
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We explore how ideas and practices common in Bayesian modeling can be applied to help assess the quality of 3D protein structural models. The basic premise of our approach is that the evaluation of a Bayesian statistical model's fit may reveal aspects of the quality of a structure when the fitted data is related to protein structural properties. Therefore, we fit a Bayesian hierarchical linear regression model to experimental and theoretical 13Cα chemical shifts. Then, we propose two complementary approaches for the evaluation of such fitting: (a) in terms of the expected differences between experimental and posterior predicted values; (b) in terms of the leave-one-out cross-validation point-wise predictive accuracy. Finally, we present visualizations that can help interpret these evaluations. The analyses presented in this article are aimed to aid in detecting problematic residues in protein structures.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Arroyuelo, Agustina; Vila, Jorge Alberto; Martín, Osvaldo Antonio; Exploring the quality of protein structural models from a Bayesian perspective; John Wiley & Sons; Journal of Computational Chemistry; 42; 21; 5-2021; 1466-1474
Compartir
Altmétricas