Mostrar el registro sencillo del ítem

dc.contributor.author
Franceschini, Esteban Andrés  
dc.contributor.author
Giménez, Gustavo  
dc.contributor.author
Lombardo, Maria Veronica  
dc.contributor.author
Zelcer, Andrés  
dc.contributor.author
Soler Illia, Galo Juan de Avila Arturo  
dc.date.available
2023-01-03T13:29:03Z  
dc.date.issued
2021-11  
dc.identifier.citation
Franceschini, Esteban Andrés; Giménez, Gustavo; Lombardo, Maria Veronica; Zelcer, Andrés; Soler Illia, Galo Juan de Avila Arturo; Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning; Springer; Journal of Sol-Gel Science and Technology; 102; 1; 11-2021; 208-218  
dc.identifier.issn
0928-0707  
dc.identifier.uri
http://hdl.handle.net/11336/183137  
dc.description.abstract
The interest in core–shell materials with chemically tunable mesoporous surfaces has significantly grown in recent years. The main limitation to obtain these systems through sequential precipitation is the tuning of the core and shell sol-gel chemistry, which usually implies low concentrations and leads to high-quality colloids although in small quantities after a lengthy and costly process. Aerosol approaches can lead to faster production and easier separation of functional materials with well-defined architectures. We present a “green chemistry” general method to coat sub-micron colloidal particles with a variety of mesoporous metal oxide nanofilms via an aerosol synthesis technique. Different types of particulate supports with isotropic and anisotropic shapes were dispersed into the precursor solutions in order to synthesize a mesoporous shell keeping the shape of the support. We chose the synthesis of TiO2 and TiSiO4 nanofilms on conventional Stöber SiO2 spherical particles, and on anisotropic micronized mica particles as a case study. We used the commercial surfactant Pluronic® F127 as a porogen. The structure and composition of the obtained nanofilms were characterized by electron microscopy, X-ray diffraction, focused ion beam coupled to SEM, and nitrogen adsorption/desorption isotherms. The TiO2 shells obtained (with an anatase-like structure) have pore diameters between 3.9–4.8 nm depending on the support with film thicknesses of ~100 nm, while amorphous TiSiO4 shells have larger diameters (9.5–16 nm) with film thicknesses of between 50 and 200 nm depending on the support used. The method presented shows high reproducibility and, unlike batch methods, allows the continuous production and straightforward recovery of the materials.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AEROSOL PROCESSING  
dc.subject
CORE–SHELL  
dc.subject
MESOPOROUS MATERIALS  
dc.subject
SILICA  
dc.subject
TITANIA  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-27T16:52:11Z  
dc.journal.volume
102  
dc.journal.number
1  
dc.journal.pagination
208-218  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Franceschini, Esteban Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Giménez, Gustavo. Instituto Nacional de Tecnologia Industrial. Gerencia Operativa de Desarrollo Tecnologico E Innovacion. Sub Gerencia Areas del Conocimiento. Direccion Tecnica de Micro y Nanotecnologias. Departamento Nanomateriales Funcionales.; Argentina  
dc.description.fil
Fil: Lombardo, Maria Veronica. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina  
dc.description.fil
Fil: Zelcer, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina  
dc.description.fil
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Sol-Gel Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10971-021-05680-1