Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the relationship between research parasites and fairness in machine learning: challenges and opportunities

Nieto, NicolásIcon ; Larrazabal, Agostina JulianaIcon ; Peterson, VictoriaIcon ; Milone, Diego HumbertoIcon ; Ferrante, EnzoIcon
Fecha de publicación: 12/2021
Editorial: Oxford University Press
Revista: GigaScience
e-ISSN: 2047-217X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Machine learning systems influence our daily lives in many different ways. Hence, it is crucial to ensure that the decisions and recommendations made by these systems are fair, equitable, and free of unintended biases. Over the past few years, the field of fairness in machine learning has grown rapidly, investigating how, when, and why these models capture, and even potentiate, biases that are deeply rooted not only in the training data but also in our society. In this Commentary, we discuss challenges and opportunities for rigorous posterior analyses of publicly available data to build fair and equitable machine learning systems, focusing on the importance of training data, model construction, and diversity in the team of developers. The thoughts presented here have grown out of the work we did, which resulted in our winning the annual Research Parasite Award that GigaScience sponsors.
Palabras clave: DEEP LEARNING , FAIRNESS , MACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 323.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/183032
URL: https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab086/647
DOI: http://dx.doi.org/10.1093/gigascience/giab086
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Nieto, Nicolás; Larrazabal, Agostina Juliana; Peterson, Victoria; Milone, Diego Humberto; Ferrante, Enzo; On the relationship between research parasites and fairness in machine learning: challenges and opportunities; Oxford University Press; GigaScience; 10; 12; 12-2021; 1-3
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES