Artículo
On the relationship between research parasites and fairness in machine learning: challenges and opportunities
Nieto, Nicolás
; Larrazabal, Agostina Juliana
; Peterson, Victoria
; Milone, Diego Humberto
; Ferrante, Enzo
Fecha de publicación:
12/2021
Editorial:
Oxford University Press
Revista:
GigaScience
e-ISSN:
2047-217X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Machine learning systems influence our daily lives in many different ways. Hence, it is crucial to ensure that the decisions and recommendations made by these systems are fair, equitable, and free of unintended biases. Over the past few years, the field of fairness in machine learning has grown rapidly, investigating how, when, and why these models capture, and even potentiate, biases that are deeply rooted not only in the training data but also in our society. In this Commentary, we discuss challenges and opportunities for rigorous posterior analyses of publicly available data to build fair and equitable machine learning systems, focusing on the importance of training data, model construction, and diversity in the team of developers. The thoughts presented here have grown out of the work we did, which resulted in our winning the annual Research Parasite Award that GigaScience sponsors.
Palabras clave:
DEEP LEARNING
,
FAIRNESS
,
MACHINE LEARNING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Nieto, Nicolás; Larrazabal, Agostina Juliana; Peterson, Victoria; Milone, Diego Humberto; Ferrante, Enzo; On the relationship between research parasites and fairness in machine learning: challenges and opportunities; Oxford University Press; GigaScience; 10; 12; 12-2021; 1-3
Compartir
Altmétricas