Mostrar el registro sencillo del ítem
dc.contributor.author
Bertinetti, María de los Ángeles

dc.contributor.author
Roatta, Analía

dc.contributor.author
Nicoletti, Emanuel Alfredo

dc.contributor.author
Leonard, Martin Eduardo

dc.contributor.author
Stout, M.
dc.contributor.author
Signorelli, Javier Walter

dc.date.available
2023-01-02T19:21:40Z
dc.date.issued
2021-06
dc.identifier.citation
Bertinetti, María de los Ángeles; Roatta, Analía; Nicoletti, Emanuel Alfredo; Leonard, Martin Eduardo; Stout, M.; et al.; How Strain-Rate Sensitivity Creates Two Forming-Limit Diagrams: Bragard-Type Versus Instability-Strain, Correlation-Coefficient-Based Temporal Curves; Springer; Journal of Materials Engineering and Performance; 30; 6; 6-2021; 4183-4193
dc.identifier.issn
1059-9495
dc.identifier.uri
http://hdl.handle.net/11336/182983
dc.description.abstract
With digital-image correlation techniques, it is now possible to measure the forming-limit diagram, FLD, of metal sheet using both strains outside (Bragard-type analysis) and inside (temporal, correlation-coefficient calculation) of a necking instability. We performed these measurements using the Marciniak and Kuczynski, MK, specimen geometry on three metals having very different strain-rate sensitivities: Zn20, a Zn-Cu-Ti alloy; a cold-rolled steel; and an AA6061-T4 aluminum alloy. The relationship between the Bragard type and temporal FLDs was very different depending on the metal?s strain-rate sensitivity. For the highly strain-rate sensitive Zn20, m = 0.075, the temporal FLD was well above the Bragard type for all strain states, from uniaxial tension to balanced-biaxial deformation. In the case of the cold-rolled steel, m = 0.015, the two analyses were equivalent in balanced-biaxial deformation, but the temporal results were higher in plane-strain and uniaxial tension, by 25 and 40%, respectively. The two types of FLD curves were equivalent for all strain states for the AA6061-T4 aluminum alloy, m = zero. In addition, we found that the strain paths followed by the three metals were different for the same MK sample geometries. These differences were due to different shapes of the yield/flow loci, as confirmed based on visco-plastic self-consistent simulations. These results indicate that engineers should account for the different FLDs for positive strain-rate sensitive metals, possibly as upper and lower bounds. In addition, it appears that for metals with yield/flow loci like that of the AA6061-T4 aluminum alloy, certain strain paths between plane strain and balanced-biaxial deformation are difficult to attain when using the MK-type sample geometry.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIGITAL-IMAGE CORRELATION
dc.subject
FORMING-LIMIT DIAGRAM
dc.subject
STRAIN-RATE SENSITIVITY
dc.subject
VPSC YIELD LOCI
dc.subject.classification
Ingeniería de los Materiales

dc.subject.classification
Ingeniería de los Materiales

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
How Strain-Rate Sensitivity Creates Two Forming-Limit Diagrams: Bragard-Type Versus Instability-Strain, Correlation-Coefficient-Based Temporal Curves
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T14:27:30Z
dc.journal.volume
30
dc.journal.number
6
dc.journal.pagination
4183-4193
dc.journal.pais
Alemania

dc.description.fil
Fil: Bertinetti, María de los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.description.fil
Fil: Roatta, Analía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.description.fil
Fil: Nicoletti, Emanuel Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
dc.description.fil
Fil: Leonard, Martin Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
dc.description.fil
Fil: Stout, M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
dc.description.fil
Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
dc.journal.title
Journal of Materials Engineering and Performance

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11665-021-05745-w
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11665-021-05745-w
Archivos asociados