Mostrar el registro sencillo del ítem

dc.contributor.author
Urrutia, Arles  
dc.contributor.author
García Angulo, Víctor Antonio  
dc.contributor.author
Fuentes, Andrés  
dc.contributor.author
Caneo, Mauricio  
dc.contributor.author
Legüe, Marcela  
dc.contributor.author
Urquiza, Sebastián  
dc.contributor.author
Delgado, Scarlett E.  
dc.contributor.author
Ugalde, Juan Esteban  
dc.contributor.author
Burdisso, Paula  
dc.contributor.author
Calixto, Andrea  
dc.date.available
2022-12-30T02:10:46Z  
dc.date.issued
2020-03  
dc.identifier.citation
Urrutia, Arles; García Angulo, Víctor Antonio; Fuentes, Andrés; Caneo, Mauricio; Legüe, Marcela; et al.; Bacterially produced metabolites protect C. elegans neurons from degeneration; Public Library of Science; PLoS Biology; 18; 3; 3-2020; 1-31  
dc.identifier.uri
http://hdl.handle.net/11336/182883  
dc.description.abstract
Caenorhabditis elegans and its cognate bacterial diet comprise a reliable, widespread model to study diet and microbiota effects on host physiology. Nonetheless, how diet influences the rate at which neurons die remains largely unknown. A number of models have been used in C. elegans as surrogates for neurodegeneration. One of these is a C. elegans strain expressing a neurotoxic allele of the mechanosensory abnormality protein 4 (MEC-4d) degenerin/epithelial Na+ (DEG/ENaC) channel, which causes the progressive degeneration of the touch receptor neurons (TRNs). Using this model, our study evaluated the effect of various dietary bacteria on neurodegeneration dynamics. Although degeneration of TRNs was steady and completed at adulthood in the strain routinely used for C. elegans maintenance (Escherichia coli OP50), it was significantly reduced in environmental and other laboratory bacterial strains. Strikingly, neuroprotection reached more than 40% in the E. coli HT115 strain. HT115 protection was long lasting well into old age of animals and was not restricted to the TRNs. Small amounts of HT115 on OP50 bacteria as well as UV-killed HT115 were still sufficient to produce neuroprotection. Early growth of worms in HT115 protected neurons from degeneration during later growth in OP50. HT115 diet promoted the nuclear translocation of DAF-16 (ortholog of the FOXO family of transcription factors), a phenomenon previously reported to underlie neuroprotection caused by downregulation of the insulin receptor in this system. Moreover, a daf-16 loss-of-function mutation abolishes HT115-driven neuroprotection. Comparative genomics, transcriptomics, and metabolomics approaches pinpointed the neurotransmitter γ-aminobutyric acid (GABA) and lactate as metabolites differentially produced between E. coli HT115 and OP50. HT115 mutant lacking glutamate decarboxylase enzyme genes (gad), which catalyze the conversion of GABA from glutamate, lost the ability to produce GABA and also to stop neurodegeneration. Moreover, in situ GABA supplementation or heterologous expression of glutamate decarboxylase in E. coli OP50 conferred neuroprotective activity to this strain. Specific C. elegans GABA transporters and receptors were required for full HT115-mediated neuroprotection. Additionally, lactate supplementation also increased anterior ventral microtubule (AVM) neuron survival in OP50. Together, these results demonstrate that bacterially produced GABA and other metabolites exert an effect of neuroprotection in the host, highlighting the role of neuroactive compounds of the diet in nervous system homeostasis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
C. ELEGANS  
dc.subject
DIET  
dc.subject
MICROBIOTA  
dc.subject
NEUROPROTECTION  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bacterially produced metabolites protect C. elegans neurons from degeneration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T21:06:52Z  
dc.identifier.eissn
1545-7885  
dc.journal.volume
18  
dc.journal.number
3  
dc.journal.pagination
1-31  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Lawrence  
dc.description.fil
Fil: Urrutia, Arles. Universidad de Valparaíso; Chile. Universidad Mayor; Chile  
dc.description.fil
Fil: García Angulo, Víctor Antonio. Universidad Mayor; Chile  
dc.description.fil
Fil: Fuentes, Andrés. Universidad Mayor; Chile  
dc.description.fil
Fil: Caneo, Mauricio. Universidad de Valparaíso; Chile  
dc.description.fil
Fil: Legüe, Marcela. Universidad de Valparaíso; Chile  
dc.description.fil
Fil: Urquiza, Sebastián. Universidad Mayor; Chile  
dc.description.fil
Fil: Delgado, Scarlett E.. Universidad de Valparaíso; Chile  
dc.description.fil
Fil: Ugalde, Juan Esteban. Universidad Mayor; Chile  
dc.description.fil
Fil: Burdisso, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina  
dc.description.fil
Fil: Calixto, Andrea. Universidad Mayor; Chile  
dc.journal.title
PLoS Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dx.plos.org/10.1371/journal.pbio.3000638  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pbio.3000638