Mostrar el registro sencillo del ítem

dc.contributor.author
Cristiá, Maximiliano  
dc.contributor.author
Katz, Ricardo David  
dc.contributor.author
Rossi, Gianfranco  
dc.date.available
2022-12-30T01:36:49Z  
dc.date.issued
2021-05  
dc.identifier.citation
Cristiá, Maximiliano; Katz, Ricardo David; Rossi, Gianfranco; Proof Automation in the Theory of Finite Sets and Finite Set Relation Algebra; Oxford University Press; Computer Journal; 65; 7; 5-2021; 1891-1903  
dc.identifier.issn
0010-4620  
dc.identifier.uri
http://hdl.handle.net/11336/182878  
dc.description.abstract
{log} (‘setlog’) is a satisfiability solver for formulas of the theory of finite sets and finite set relation algebra (FS&RA). As such, it can be used as an automated theorem prover for this theory. {log} is able to automatically prove a number of FS&RA theorems, but not all of them. Nevertheless, we have observed that many theorems that {log} cannot automatically prove can be divided into a few subgoals automatically dischargeable by {log}. The purpose of this work is to present a prototype interactive theorem prover (ITP), called {log}-ITP, providing evidence that a proper integration of {log} into world-class ITP’s can deliver a great deal of proof automation concerning FS&RA. An empirical evaluation based on 210 theorems from the TPTP and Coq’s SSReflect libraries shows a noticeable reduction in the size and complexity of the proofs with respect to Coq.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOMATED PROOFS  
dc.subject
CONSTRAINT LOGIC PROGRAMMING  
dc.subject
SET THEORY  
dc.subject
{LOG}  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Proof Automation in the Theory of Finite Sets and Finite Set Relation Algebra  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-31T14:59:07Z  
dc.journal.volume
65  
dc.journal.number
7  
dc.journal.pagination
1891-1903  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Cristiá, Maximiliano. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Rossi, Gianfranco. Università di Parma; Italia  
dc.journal.title
Computer Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/comjnl/advance-article/doi/10.1093/comjnl/bxab030/6262250  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/comjnl/bxab030