Artículo
Differentiator for Noisy Sampled Signals with Best Worst-Case Accuracy
Fecha de publicación:
06/2021
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Control Systems Letters
e-ISSN:
2475-1456
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This letter proposes a differentiator for sampled signals with bounded noise and bounded second derivative. It is based on a linear program derived from the available sample information and requires no further tuning beyond the noise and derivative bounds. A tight bound on the worst-case accuracy, i.e., the worst-case differentiation error, is derived, which is the best among all causal differentiators and is moreover shown to be obtained after a fixed number of sampling steps. Comparisons with the accuracy of existing high-gain and sliding-mode differentiators illustrate the obtained results.
Palabras clave:
DIFFERENTIATION
,
ESTIMATION
,
OBSERVERS
,
OPTIMIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Haimovich, Hernan; Seeber, Richard; Aldana Lopez, Rodrigo; Gomez Gutierrez, David; Differentiator for Noisy Sampled Signals with Best Worst-Case Accuracy; Institute of Electrical and Electronics Engineers; IEEE Control Systems Letters; 6; 6-2021; 938-943
Compartir
Altmétricas