Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Guided structure-based ligand identification and design via artificial intelligence modeling

Di Filippo, Juan IgnacioIcon ; Cavasotto, Claudio NorbertoIcon
Fecha de publicación: 08/2021
Editorial: Informa Healthcare
Revista: Expert Opinion On Drug Discovery
ISSN: 1746-0441
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Medicina Química

Resumen

Introduction: The implementation of Artificial Intelligence (AI) methodologies to drug discovery (DD) are on the rise. Several applications have been developed for structure-based DD, where AI methods provide an alternative framework for the identification of ligands for validated therapeutic targets, as well as the de novo design of ligands through generative models. Areas covered: Herein, the authors review the contributions between the 2019 to present period regarding the application of AI methods to structure-based virtual screening (SBVS) which encompasses mainly molecular docking applications–binding pose prediction and binary classification for ligand or hit identification-, as well as de novo drug design driven by machine learning (ML) generative models, and the validation of AI models in structure-based screening. Studies are reviewed in terms of their main objective, used databases, implemented methodology, input and output, and key results. Expert opinion: More profound analyses regarding the validity and applicability of AI methods in DD have begun to appear. In the near future, we expect to see more structure-based generative models- which are scarce in comparison to ligand-based generative models-, the implementation of standard guidelines for validating the generated structures, and more analyses regarding the validation of AI methods in structure-based DD.
Palabras clave: ARTIFICIAL INTELLIGENCE , DRUG DISCOVERY , MACHINE LEARNING , MOLECULAR DOCKING , STRUCTURE-BASED VIRTUAL SCREENING
Ver el registro completo
 
Archivos asociados
Tamaño: 448.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182867
DOI: http://dx.doi.org/10.1080/17460441.2021.1979514
URL: https://www.tandfonline.com/doi/full/10.1080/17460441.2021.1979514
Colecciones
Articulos(IIMT)
Articulos de INSTITUTO DE INVESTIGACIONES EN MEDICINA TRASLACIONAL
Citación
Di Filippo, Juan Ignacio; Cavasotto, Claudio Norberto; Guided structure-based ligand identification and design via artificial intelligence modeling; Informa Healthcare; Expert Opinion On Drug Discovery; 17; 1; 8-2021; 71-78
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES