Mostrar el registro sencillo del ítem

dc.contributor.author
Aron, Camille  
dc.contributor.author
Barci, Daniel C.  
dc.contributor.author
Cugliandolo, Leticia F.  
dc.contributor.author
Gonzales Arenas, Zochil  
dc.contributor.author
Lozano, Gustavo Sergio  
dc.date.available
2017-06-15T19:33:55Z  
dc.date.issued
2014-09  
dc.identifier.citation
Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio; Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-59  
dc.identifier.issn
1742-5468  
dc.identifier.uri
http://hdl.handle.net/11336/18278  
dc.description.abstract
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Iop Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Path Integral  
dc.subject
Noise  
dc.subject
Spin Dynamics  
dc.subject.classification
Física Nuclear  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-12T18:04:50Z  
dc.journal.volume
2014  
dc.journal.pagination
1-59  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Bristol  
dc.description.fil
Fil: Aron, Camille. Rutgers University; Estados Unidos. University of Princeton; Estados Unidos  
dc.description.fil
Fil: Barci, Daniel C.. Universidade do Estado do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Cugliandolo, Leticia F.. Sorbonne Universités; Francia  
dc.description.fil
Fil: Gonzales Arenas, Zochil. Centro Brasileiro de Pesquisas Fisicas; Brasil  
dc.description.fil
Fil: Lozano, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Sorbonne Universités; Francia  
dc.journal.title
Journal Of Statistical Mechanics: Theory And Experiment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09008