Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Processing multi-way chromatographic data for analytical calibration, classification and discrimination: A successful marriage between separation science and chemometrics

Anzardi, Maria Betania; Arancibia, Juan AlbertoIcon ; Olivieri, Alejandro CesarIcon
Fecha de publicación: 01/2021
Editorial: Elsevier
Revista: Trac-Trends In Analytical Chemistry
ISSN: 0165-9936
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Recent research works on multi-way chromatographic data for analytical calibration, classification and discrimination are reviewed. Focus is directed towards measured data arrays in the form of matrices, three- and four-dimensional mathematical objects, depending on the number of elution time and instrumental detection modes. Chemometric models typically used to process these data and to obtain the maximum amount of information on the studied systems are discussed. The advantages in processing such data for complex samples are highlighted, both for quantitative and qualitative purposes. In the former case, the achievement of the second-order advantage which permits analyte quantitation in the presence of uncalibrated constituents is perhaps the most relevant contribution to this field. For classification and discrimination, the processing of multi-way chromatographic data provides highly compressed information which can then be submitted to appropriate algorithms. This represents an additional advantage, because individual analytes do not need to be fully resolved and quantitated.
Palabras clave: CHEMOMETRIC MODELLING , MULTI-WAY CHROMATOGRAPHY , MULTIVARIATE CURVE RESOLUTION , MULTIVARIATE DETECTION , PARALLEL FACTOR ANALYSIS , PARTIAL LEAST-SQUARES
Ver el registro completo
 
Archivos asociados
Tamaño: 1.143Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182589
DOI: http://dx.doi.org/10.1016/j.trac.2020.116128
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Anzardi, Maria Betania; Arancibia, Juan Alberto; Olivieri, Alejandro Cesar; Processing multi-way chromatographic data for analytical calibration, classification and discrimination: A successful marriage between separation science and chemometrics; Elsevier; Trac-Trends In Analytical Chemistry; 134; 1-2021; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES