Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Estimation of leaf area index and leaf chlorophyll content in Sporobolus densiflorus using hyperspectral measurements and PROSAIL model simulations

Piegari, EstefaníaIcon ; Gossn, Juan IgnacioIcon ; Grings, Francisco MatiasIcon ; Barraza Bernadas, Verónica DanielaIcon ; Juarez, Angela Beatriz; Mateos Naranjo, Enrique; Gonzalez Trilla, Gabriela LilianaIcon
Fecha de publicación: 12/2020
Editorial: Taylor & Francis Ltd
Revista: International Journal of Remote Sensing
ISSN: 0143-1161
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Previous studies have shown the potential of remote-sensing tools to monitor coastal wetlands at a landscape scale. Several biophysical parameters are typically used to evaluate ecosystem conditions such as the chlorophyll content, an indicator of photosynthesis activity. In natural environments characterized by a large fraction of standing litter–such as the marshes on the Atlantic coast of the Buenos Aires Province–spectral indices designed for green vegetation change their typical response and, hence, their biophysical interpretation requires more attention. In this work, a theoretical study was performed to determine if it is possible to detect and eventually quantify the abrupt reductions of leaf chlorophyll content ((Formula presented.)) in Sporobolus densiflorus–the dominant vegetation in these marshes–using hyperspectral data. To achieve this, in situ radiometric measurements in the VIS-NIR-SWIR (Visible, Near-Infrared and Short Wave Infrared) spectral region and biological data, acquired over S. densiflorus specimens in several campaigns, were used to set up an inversion procedure based on the radiative transfer model PROSAIL. By applying this model, simulated reflectances that fit the measured reflectances were obtained and by means of this inversion a theoretical canopy reflectance data set for S. densiflorus was modelled using the PROSAIL parameters. The performance of several vegetation indices typically used to estimate chlorophyll content was studied using the simulated and modelled reflectances, among which MTCI (MERIS Terrestrial Chlorophyll Index), Macc and MCARI/OSAVI (Modified Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted Index) indices showed significant correlation with (Formula presented.). By means of addressing the performance of these indices together with BLRs (Baseline Residuals), a two-step VI-LUT (Vegetation Index–Look-Up Table) inversion model was proposed to retrieve (Formula presented.), which first corrects the effect of variable leaf area index (LAI) using a BLR index (using bands at 800, 1100 and 1300 nm), and then retrieves (Formula presented.) by either using MCARI/OSAVI or another BLR (using bands at 657, 672 and 700 nm). Even though both procedures perform similarly well in the estimation of (Formula presented.) (coefficient of determination (Formula presented.) about 0.6) the two steps BLR-based approach is preferred, given that these indices are a priori less sensitive to undesired atmospheric effects.
Palabras clave: SPOROBOLUS DENSIFLORUS , REFLECTANCE , CHLOROPHYLL A AND B CONTENT
Ver el registro completo
 
Archivos asociados
Tamaño: 4.225Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182580
URL: https://www.tandfonline.com/doi/abs/10.1080/01431161.2020.1826058
DOI: https://dx.doi.org/10.1080/01431161.2020.1826058
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Piegari, Estefanía; Gossn, Juan Ignacio; Grings, Francisco Matias; Barraza Bernadas, Verónica Daniela; Juarez, Angela Beatriz; et al.; Estimation of leaf area index and leaf chlorophyll content in Sporobolus densiflorus using hyperspectral measurements and PROSAIL model simulations; Taylor & Francis Ltd; International Journal of Remote Sensing; 42; 4; 12-2020; 1181-1200
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES