Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improved prediction of HLA antigen presentation hotspots: Applications for immunogenicity risk assessment of therapeutic proteins

Attermann, Anders Steenholdt; Barra, Carolina; Reynisson, Birkir; Schultz, Heidi Schiøler; Leurs, Ulrike; Lamberth, Kasper; Nielsen, MortenIcon
Fecha de publicación: 02/2021
Editorial: Wiley Blackwell Publishing, Inc
Revista: Immunology
ISSN: 0019-2805
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Immunogenicity risk assessment is a critical element in protein drug development. Currently, the risk assessment is most often performed using MHC-associated peptide proteomics (MAPPs) and/or T-cell activation assays. However, this is a highly costly procedure that encompasses limited sensitivity imposed by sample sizes, the MHC repertoire of the tested donor cohort and the experimental procedures applied. Recent work has suggested that these techniques could be complemented by accurate, high-throughput and cost-effective prediction of in silico models. However, this work covered a very limited set of therapeutic proteins and eluted ligand (EL) data. Here, we resolved these limitations by showcasing, in a broader setting, the versatility of in silico models for assessment of protein drug immunogenicity. A method for prediction of MHC class II antigen presentation was developed on the hereto largest available mass spectrometry (MS) HLA-DR EL data set. Using independent test sets, the performance of the method for prediction of HLA-DR antigen presentation hotspots was benchmarked. In particular, the method was showcased on a set of protein sequences including four therapeutic proteins and demonstrated to accurately predict the experimental MS hotspot regions at a significantly lower false-positive rate compared with other methods. This gain in performance was particularly pronounced when compared to the NetMHCIIpan-3.2 method trained on binding affinity data. These results suggest that in silico methods trained on MS HLA EL data can effectively and accurately be used to complement MAPPs assays for the risk assessment of protein drugs.
Palabras clave: HLA ANTIGEN PRESENTATION , HLA ELUTED LIGANDS , IMMUNOGENICITY ASSESSMENT , PREDICTION , PROTEIN IMMUNOGENICITY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.783Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182476
DOI: http://dx.doi.org/10.1111/imm.13274
URL: https://onlinelibrary.wiley.com/doi/10.1111/imm.13274
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Attermann, Anders Steenholdt; Barra, Carolina; Reynisson, Birkir; Schultz, Heidi Schiøler; Leurs, Ulrike; et al.; Improved prediction of HLA antigen presentation hotspots: Applications for immunogenicity risk assessment of therapeutic proteins; Wiley Blackwell Publishing, Inc; Immunology; 162; 2; 2-2021; 208-219
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES