Mostrar el registro sencillo del ítem
dc.contributor.author
Lorenzon, Denis
dc.contributor.author
Elaskar, Sergio Amado
dc.date.available
2022-12-26T17:45:54Z
dc.date.issued
2021-10-29
dc.identifier.citation
Lorenzon, Denis; Elaskar, Sergio Amado; Using linear multistep methods for the time stepping in Vlasov–Poisson simulations; Springer Science and Business Media Deutschland GmbH; Computational and Applied Mathematics; 40; 8; 29-10-2021; 1-22
dc.identifier.issn
1807-0302
dc.identifier.uri
http://hdl.handle.net/11336/182349
dc.description.abstract
The numerical simulation of hot and low density plasmas using the Vlasov–Poisson model is necessary for many practical applications such as the characterization of laboratory and astrophysical plasmas. The numerical treatment of the Vlasov equation is addressed using Eulerian methods when high precision and low noise are required. Among these methods, we highlight those based on finite-volumes without splitting, which have shown to be a good option for capturing small structures in phase space with low dissipation while preserving positivity. The problem is that kinetic simulations usually require the discretization of 3–6-dimensional phase-spaces which results in a huge number of ordinary differential equations (ODEs). This stands out the importance of using efficient schemes for the time integration. In this article, linear multistep methods are implemented for the time stepping of the resulting equations, and compared against traditional Runge–Kutta ones. Schemes with built-in error estimation are also implemented in an attempt to perform adaptive stepsize control. Their accuracy, stability and computational cost are compared through the simulation of classical benchmark problems for the two-dimensional Vlasov–Poisson system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Science and Business Media Deutschland GmbH
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ADAPTIVE STEPSIZE
dc.subject
FINITE-VOLUMES
dc.subject
MULTISTEP METHODS
dc.subject
VLASOV–POISSON
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Using linear multistep methods for the time stepping in Vlasov–Poisson simulations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-07T14:32:47Z
dc.journal.volume
40
dc.journal.number
8
dc.journal.pagination
1-22
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Lorenzon, Denis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
dc.description.fil
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
dc.journal.title
Computational and Applied Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s40314-021-01683-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s40314-021-01683-4
Archivos asociados