Mostrar el registro sencillo del ítem

dc.contributor.author
Lorenzon, Denis  
dc.contributor.author
Elaskar, Sergio Amado  
dc.date.available
2022-12-26T17:45:54Z  
dc.date.issued
2021-10-29  
dc.identifier.citation
Lorenzon, Denis; Elaskar, Sergio Amado; Using linear multistep methods for the time stepping in Vlasov–Poisson simulations; Springer Science and Business Media Deutschland GmbH; Computational and Applied Mathematics; 40; 8; 29-10-2021; 1-22  
dc.identifier.issn
1807-0302  
dc.identifier.uri
http://hdl.handle.net/11336/182349  
dc.description.abstract
The numerical simulation of hot and low density plasmas using the Vlasov–Poisson model is necessary for many practical applications such as the characterization of laboratory and astrophysical plasmas. The numerical treatment of the Vlasov equation is addressed using Eulerian methods when high precision and low noise are required. Among these methods, we highlight those based on finite-volumes without splitting, which have shown to be a good option for capturing small structures in phase space with low dissipation while preserving positivity. The problem is that kinetic simulations usually require the discretization of 3–6-dimensional phase-spaces which results in a huge number of ordinary differential equations (ODEs). This stands out the importance of using efficient schemes for the time integration. In this article, linear multistep methods are implemented for the time stepping of the resulting equations, and compared against traditional Runge–Kutta ones. Schemes with built-in error estimation are also implemented in an attempt to perform adaptive stepsize control. Their accuracy, stability and computational cost are compared through the simulation of classical benchmark problems for the two-dimensional Vlasov–Poisson system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Science and Business Media Deutschland GmbH  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ADAPTIVE STEPSIZE  
dc.subject
FINITE-VOLUMES  
dc.subject
MULTISTEP METHODS  
dc.subject
VLASOV–POISSON  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Using linear multistep methods for the time stepping in Vlasov–Poisson simulations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-07T14:32:47Z  
dc.journal.volume
40  
dc.journal.number
8  
dc.journal.pagination
1-22  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Lorenzon, Denis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina  
dc.description.fil
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina  
dc.journal.title
Computational and Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s40314-021-01683-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s40314-021-01683-4