Mostrar el registro sencillo del ítem
dc.contributor.author
Chaves, Hernan
dc.contributor.author
Dorr, Francisco
dc.contributor.author
Costa, Martín Elías
dc.contributor.author
Serra, María Mercedes
dc.contributor.author
Fernandez Slezak, Diego
dc.contributor.author
Farez, Mauricio Franco
dc.contributor.author
Sevlever, Gustavo
dc.contributor.author
Yañez, Paulina Celia
dc.contributor.author
Cejas, Claudia
dc.date.available
2022-12-22T17:28:04Z
dc.date.issued
2021-05
dc.identifier.citation
Chaves, Hernan; Dorr, Francisco; Costa, Martín Elías; Serra, María Mercedes; Fernandez Slezak, Diego; et al.; Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL; Elsevier; Journal Of Neuroradiology. Journal de Neuroradiologie.; 48; 3; 5-2021; 147-156
dc.identifier.issn
0150-9861
dc.identifier.uri
http://hdl.handle.net/11336/182236
dc.description.abstract
Background and purpose: There are instances in which an estimate of the brain volume should be obtained from MRI in clinical practice. Our objective is to calculate cross-sectional robustness of a convolutional neural network (CNN) based software (Entelai Pic) for brain volume estimation and compare it to traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC). Materials and Methods: Sixteen HC were scanned four times, two different days on two different MRI scanners (1.5 T and 3 T). Volumetric T1-weighted images were acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement between methods was assessed using intraclass correlation coefficient (ICC) and Bland Altman plots. Robustness was assessed using the coefficient of variation (CV). Results: Whole-brain volume estimation had better correlation between FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94−0.97)) than FreeSurfer and CAT12 (0.92 (0.88−0.96)) and FSL (0.87 (0.79−0.91)). WM, GM and CSF showed a similar trend. Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 1.05, range 0.21–3.20%, p = 0.86) and on different-scanner variables (mean CV 3.84, range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p = 0.96). Mean post-processing times were 480, 5, 40 and 5 min for FreeSurfer, Entelai Pic, CAT12 and FSL respectively. Conclusion: Based on robustness and processing times, our CNN-based model is suitable for cross-sectional volumetry on clinical practice.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
BRAIN
dc.subject
DEEP LEARNING
dc.subject
FREESURFER.
dc.subject
MAGNETIC RESONANCE IMAGING
dc.subject
SEGMENTATION
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-22T16:16:08Z
dc.identifier.eissn
1773-0406
dc.journal.volume
48
dc.journal.number
3
dc.journal.pagination
147-156
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Chaves, Hernan. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Dorr, Francisco. Entelai; Argentina
dc.description.fil
Fil: Costa, Martín Elías. Entelai; Argentina
dc.description.fil
Fil: Serra, María Mercedes. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Fernandez Slezak, Diego. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Sevlever, Gustavo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina
dc.description.fil
Fil: Yañez, Paulina Celia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Cejas, Claudia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.journal.title
Journal Of Neuroradiology. Journal de Neuroradiologie.
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0150986120302807
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.neurad.2020.10.001
Archivos asociados