Mostrar el registro sencillo del ítem

dc.contributor.author
Chaves, Hernan  
dc.contributor.author
Dorr, Francisco  
dc.contributor.author
Costa, Martín Elías  
dc.contributor.author
Serra, María Mercedes  
dc.contributor.author
Fernandez Slezak, Diego  
dc.contributor.author
Farez, Mauricio Franco  
dc.contributor.author
Sevlever, Gustavo  
dc.contributor.author
Yañez, Paulina Celia  
dc.contributor.author
Cejas, Claudia  
dc.date.available
2022-12-22T17:28:04Z  
dc.date.issued
2021-05  
dc.identifier.citation
Chaves, Hernan; Dorr, Francisco; Costa, Martín Elías; Serra, María Mercedes; Fernandez Slezak, Diego; et al.; Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL; Elsevier; Journal Of Neuroradiology. Journal de Neuroradiologie.; 48; 3; 5-2021; 147-156  
dc.identifier.issn
0150-9861  
dc.identifier.uri
http://hdl.handle.net/11336/182236  
dc.description.abstract
Background and purpose: There are instances in which an estimate of the brain volume should be obtained from MRI in clinical practice. Our objective is to calculate cross-sectional robustness of a convolutional neural network (CNN) based software (Entelai Pic) for brain volume estimation and compare it to traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC). Materials and Methods: Sixteen HC were scanned four times, two different days on two different MRI scanners (1.5 T and 3 T). Volumetric T1-weighted images were acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement between methods was assessed using intraclass correlation coefficient (ICC) and Bland Altman plots. Robustness was assessed using the coefficient of variation (CV). Results: Whole-brain volume estimation had better correlation between FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94−0.97)) than FreeSurfer and CAT12 (0.92 (0.88−0.96)) and FSL (0.87 (0.79−0.91)). WM, GM and CSF showed a similar trend. Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 1.05, range 0.21–3.20%, p = 0.86) and on different-scanner variables (mean CV 3.84, range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p = 0.96). Mean post-processing times were 480, 5, 40 and 5 min for FreeSurfer, Entelai Pic, CAT12 and FSL respectively. Conclusion: Based on robustness and processing times, our CNN-based model is suitable for cross-sectional volumetry on clinical practice.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BRAIN  
dc.subject
DEEP LEARNING  
dc.subject
FREESURFER.  
dc.subject
MAGNETIC RESONANCE IMAGING  
dc.subject
SEGMENTATION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-22T16:16:08Z  
dc.identifier.eissn
1773-0406  
dc.journal.volume
48  
dc.journal.number
3  
dc.journal.pagination
147-156  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Chaves, Hernan. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina  
dc.description.fil
Fil: Dorr, Francisco. Entelai; Argentina  
dc.description.fil
Fil: Costa, Martín Elías. Entelai; Argentina  
dc.description.fil
Fil: Serra, María Mercedes. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina  
dc.description.fil
Fil: Fernandez Slezak, Diego. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sevlever, Gustavo. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Entelai; Argentina  
dc.description.fil
Fil: Yañez, Paulina Celia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Cejas, Claudia. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina  
dc.journal.title
Journal Of Neuroradiology. Journal de Neuroradiologie.  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0150986120302807  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.neurad.2020.10.001