Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Effect of particle size in Li4Ti5O12 (LTO)-LiMn2O4 (LMO) batteries: A numerical simulation study

Rozenblit, AbigailIcon ; Torres, Walter RamonIcon ; Tesio, Alvaro YamilIcon ; Calvo, Ernesto JulioIcon
Fecha de publicación: 09/2021
Editorial: Springer
Revista: Journal of Solid State Electrochemistry (print)
ISSN: 1432-8488
e-ISSN: 1433-0768
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

Multiscale numerical simulations based on the porous-electrode theory developed by Newman et al. have been carried out in COMSOL 5.4 environment for different particle sizes (PS) of LiMn2O4 cathode material in Li4Ti5O12 (LTO)-LiMn2O4 (LMO) batteries. The electrolyte used in the simulations was 1.2 M LiPF6 in a 3:7 wt % mixture of ethyl carbonate (EC) and ethyl methyl carbonate (EMC). The model has been validated against experimental data from the literature for half cells (LTO-Li and LMO-Li) and full LTO-LMO cells. A multiple-material model has been adapted to describe an LMO cathode as a material blend with two PS (100 and 1000 nm radii), representing a binary PS distribution (PSD) within the material. The simulation results show that larger populations of small particles at constant cathode material load and constant current density over the electroactive area can effectively allow for larger currents to be applied due to the compensating larger active surface area per unit volume, which decreased the local current density at the LMO crystal interface with the electrolyte. However, higher overpotentials were obtained for cells with higher proportions of small particles, meaning that there is a compromise between electrical work output and C-rate. These findings highlight the importance of microstructure and PS in battery design, particularly in the LTO-LMO system.
Palabras clave: BINARY , LITHIUM , LMO , LTO , PARTICLE SIZE , SIMULATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.492Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182171
URL: https://link.springer.com/10.1007/s10008-021-05020-x
DOI: http://dx.doi.org/10.1007/s10008-021-05020-x
Colecciones
Articulos (CIDMEJu)
Articulos de CENTRO DE INVESTIGACION Y DESARROLLO EN MATERIALES AVANZADOS Y ALMACENAMIENTO DE ENERGIA DE JUJUY
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Rozenblit, Abigail; Torres, Walter Ramon; Tesio, Alvaro Yamil; Calvo, Ernesto Julio; Effect of particle size in Li4Ti5O12 (LTO)-LiMn2O4 (LMO) batteries: A numerical simulation study; Springer; Journal of Solid State Electrochemistry (print); 25; 8-9; 9-2021; 2395-2408
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES