Artículo
Neural networks that locate and identify birds through their songs
Fecha de publicación:
04/2022
Editorial:
Springer
Revista:
European Physical Journal: Special Topics
ISSN:
1951-6355
e-ISSN:
1951-6401
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we present a set of algorithms that allow the location and identification of birds through their songs. To achieve the first objective, neural networks capable of reconstructing the position of the subject are trained from a set of differences in the arrival times of a sound signal to the different microphones in an array. For the second objective, a dynamical system is used to generate surrogate songs, similar to those of a given set of subjects, to train a neural network so that it can classify subjects. Taken together, they constitute an interesting tool for the automatic monitoring of small bird populations.
Palabras clave:
Neural networks
,
Birdsong
,
Machine learning
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Bistel Esquivel, Roberto Andrés; Martinez, Alejandro; Mindlin, Bernardo Gabriel; Neural networks that locate and identify birds through their songs; Springer; European Physical Journal: Special Topics; 231; 3; 4-2022; 185-194
Compartir
Altmétricas