Mostrar el registro sencillo del ítem
dc.contributor.author
Deco, Gustavo
dc.contributor.author
Sanz Perl, Yonathan
dc.contributor.author
Vuust, Peter
dc.contributor.author
Tagliazucchi, Enzo Rodolfo
dc.contributor.author
Kennedy, Henry
dc.contributor.author
Kringelbach, Morten L.
dc.date.available
2022-12-22T11:08:09Z
dc.date.issued
2021-10
dc.identifier.citation
Deco, Gustavo; Sanz Perl, Yonathan; Vuust, Peter; Tagliazucchi, Enzo Rodolfo; Kennedy, Henry; et al.; Rare long-range cortical connections enhance human information processing; Cell Press; Current Biology; 31; 20; 10-2021; 4436-4448.e5
dc.identifier.issn
0960-9822
dc.identifier.uri
http://hdl.handle.net/11336/182119
dc.description.abstract
What are the key topological features of connectivity critically relevant for generating the dynamics underlying efficient cortical function? A candidate feature that has recently emerged is that the connectivity of the mammalian cortex follows an exponential distance rule, which includes a small proportion of long-range high-weight anatomical exceptions to this rule. Whole-brain modeling of large-scale human neuroimaging data in 1,003 participants offers the unique opportunity to create two models, with and without long-range exceptions, and explicitly study their functional consequences. We found that rare long-range exceptions are crucial for significantly improving information processing. Furthermore, modeling in a simplified ring architecture shows that this improvement is greatly enhanced by the turbulent regime found in empirical neuroimaging data. Overall, the results provide strong empirical evidence for the immense functional benefits of long-range exceptions combined with turbulence for information processing.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cell Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIFFUSION MRI
dc.subject
FUNCTIONAL MRI
dc.subject
LONG-RANGE EXCEPTIONS
dc.subject
TURBULENCE
dc.subject
WHOLE-BRAIN MODELING
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Rare long-range cortical connections enhance human information processing
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-28T13:39:28Z
dc.journal.volume
31
dc.journal.number
20
dc.journal.pagination
4436-4448.e5
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Deco, Gustavo. Monash University; Australia. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Sanz Perl, Yonathan. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Vuust, Peter. University of Oxford; Reino Unido
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Kennedy, Henry. Inserm; Francia
dc.description.fil
Fil: Kringelbach, Morten L.. University Aarhus; Dinamarca
dc.journal.title
Current Biology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cub.2021.07.064
Archivos asociados