Mostrar el registro sencillo del ítem
dc.contributor.author
Angarita Villamizar, Ivette Johanna

dc.contributor.author
Mazzobre, Maria Florencia

dc.contributor.author
Corti, Horacio Roberto

dc.contributor.author
Longinotti, María Paula

dc.date.available
2022-12-22T10:20:22Z
dc.date.issued
2021-07
dc.identifier.citation
Angarita Villamizar, Ivette Johanna; Mazzobre, Maria Florencia; Corti, Horacio Roberto; Longinotti, María Paula; Revisiting the glass transition temperature of water-glycerol mixtures in the bulk and confined in mesoporous silica; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 23; 31; 7-2021; 17018-17025
dc.identifier.issn
1463-9076
dc.identifier.uri
http://hdl.handle.net/11336/182100
dc.description.abstract
In this work, we revisited the glass transition temperature (Tg) behavior of bulk and confined water-glycerol solutions as a function of the mixture composition and size of the confinement media, with the aim to shed some light on some controversies found in the literature. In the case of bulk mixtures, some discrepancies are observed due to the differences in the way of calculating Tg from the DSC experiments and differences in the protocols of cooling/reheating. However, unphysical behavior observed below the eutectic composition can be due to the crystallization of water during the cooling of the mixture. We also analyzed the effect of confinement on the glass transition of glycerol aqueous solutions, with glycerol mass fraction, wG, between 0.5 and 1.0, in silica mesoporous samples with pore diameters between 2 and 58 nm. Our results show that the the Tg dependence on pore size changes with the mixture composition. For glycerol-rich samples, Tg decreases with a decreasing pore size. This tendency changes with increasing water concentration below wG ∼ 0.6 for samples with dp between 2 and 8 nm, where two glass transition temperatures appear. We hypothesize that this effect is related to the existence of two liquid phases with different densities. The Tg composition dependence in confined glycerol-water mixtures was analyzed with the Gordon-Taylor equation modified for confined mixtures, which allowed us to calculate the Tg of the pure components as a function of the pore size. This analysis shows that for pores with dp > 20 nm, and for pure water and pure glycerol, Tg decreases with the pore size, attaining an almost constant value for samples with pore sizes between 2 and 8 nm. This Tg pore size dependence is explained considering the competition of two opposite effects: a reduction in Tg with a decreasing pore size given when the length scale of dynamics is comparable to the pore size, and an increment in Tg with a decreasing pore size as a result of increasing interactions of the confined liquid with the pore walls.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Royal Society of Chemistry

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
TEMPERATURA DE TRANSICION VITREA
dc.subject
CONFINAMIENTO
dc.subject
TRANSICION VITREA
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Revisiting the glass transition temperature of water-glycerol mixtures in the bulk and confined in mesoporous silica
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-07T19:12:02Z
dc.journal.volume
23
dc.journal.number
31
dc.journal.pagination
17018-17025
dc.journal.pais
Reino Unido

dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Angarita Villamizar, Ivette Johanna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Mazzobre, Maria Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina
dc.description.fil
Fil: Corti, Horacio Roberto. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Longinotti, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.journal.title
Physical Chemistry Chemical Physics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=D1CP02153B
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/D1CP02153B
Archivos asociados