Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An apta-aggregation based machine learning assay for rapid quantification of lysozyme through texture parameters

Sanjay, Manoharan; Gaurav, Kumar; Gonzalez Pabon, Maria JesusIcon ; Fuchs, Julio SilvioIcon ; Mikkelsen, Susan R.; Corton, EduardoIcon
Fecha de publicación: 03/2021
Editorial: Public Library of Science
Revista: Plos One
ISSN: 1932-6203
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biotecnología Medioambiental

Resumen

A novel assay technique that involves quantification of lysozyme (Lys) through machine learning is put forward here. This article reports the tendency of the well- documented Ellington group anti-Lys aptamer, to produce aggregates when exposed to Lys. This property of apta-aggregation has been exploited here to develop an assay that quantifies the Lys using texture and area parameters from a photograph of the elliptical aggregate mass through machine learning. Two assay sets were made for the experimental procedure: one with high Lys concentration between 25–100 mM and another with low concentration between 1–20 mM. The high concentration set had a sample volume of 10 μl while the low concentration set had a higher sample volume of 100 μl, in order to obtain the statistical texture values reliably from the aggregate mass. The platform exhibited an experimental limit of detection of 1 mM and a response time of less than 10 seconds. Further, two potential operating modes for the aptamer were hypothesized for this aggregation property and the more accurate mode among the two was ascertained through bioinformatics studies.
Palabras clave: APTAMERS , AGGREGATION , LYSOZYME , MACHINE-LEARNING BASED QUANTIFICATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.334Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/181825
URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248159
DOI: http://dx.doi.org/10.1371/journal.pone.0248159
Colecciones
Articulos(IQUIBICEN)
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Sanjay, Manoharan; Gaurav, Kumar; Gonzalez Pabon, Maria Jesus; Fuchs, Julio Silvio; Mikkelsen, Susan R.; et al.; An apta-aggregation based machine learning assay for rapid quantification of lysozyme through texture parameters; Public Library of Science; Plos One; 16; 3; 3-2021; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES