Mostrar el registro sencillo del ítem
dc.contributor.author
Molinos, Miguel
dc.contributor.author
Martín Stickle, Miguel
dc.contributor.author
Navas, Pedro
dc.contributor.author
Yagüe, Ángel
dc.contributor.author
Manzanal, Diego
dc.contributor.author
Pastor, Manuel
dc.date.available
2022-12-19T15:18:53Z
dc.date.issued
2021-06
dc.identifier.citation
Molinos, Miguel; Martín Stickle, Miguel; Navas, Pedro; Yagüe, Ángel; Manzanal, Diego; et al.; Toward a local maximum-entropy material point method at finite strain within a B-free approach; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 122; 20; 6-2021; 5594-5625
dc.identifier.issn
0029-5981
dc.identifier.uri
http://hdl.handle.net/11336/181764
dc.description.abstract
The material point method can be regarded as a meshfree extension of the finite element method. This fact has two interesting consequences. On the one hand, this puts a vast literature at our disposal. On the other hand, many of this inheritance has been adopted without questioning it. A clear example of it is the use of the Voigt algebra, which introduces an artificial break point between the formulation of the continuum problem and its discretized counterpart. In the authors' opinion, the use of the Voigt rules leads to a cumbersome formulation where the physical sense of the operations is obscured since the well-known algebra rules are lost. And with them, the intuition about how stresses and strains are related. To illustrate it, we will describe gently and meticulously the whole process to solve the nonlinear governing equations for isothermal finite strain elastodynamics, concluding with a compact set of expressions ready to be implemented effortless. In addition, the classic Newmark- (Formula presented.) algorithm has been accommodated to the local maximum-entropy material point method framework by means of an incremental formulation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
B FREE
dc.subject
FINITE STRAIN
dc.subject
MATERIAL POINT METHOD
dc.subject
NEWMARK-Β
dc.subject
VOIGT FREE
dc.subject.classification
Otras Ingeniería Civil
dc.subject.classification
Ingeniería Civil
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Toward a local maximum-entropy material point method at finite strain within a B-free approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T23:56:54Z
dc.journal.volume
122
dc.journal.number
20
dc.journal.pagination
5594-5625
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Molinos, Miguel. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Martín Stickle, Miguel. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Navas, Pedro. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Yagüe, Ángel. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad Politécnica de Madrid; España
dc.description.fil
Fil: Pastor, Manuel. Universidad Politécnica de Madrid; España
dc.journal.title
International Journal for Numerical Methods in Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/nme.6765
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/nme.6765
Archivos asociados