Mostrar el registro sencillo del ítem

dc.contributor.author
Molinos, Miguel  
dc.contributor.author
Martín Stickle, Miguel  
dc.contributor.author
Navas, Pedro  
dc.contributor.author
Yagüe, Ángel  
dc.contributor.author
Manzanal, Diego  
dc.contributor.author
Pastor, Manuel  
dc.date.available
2022-12-19T15:18:53Z  
dc.date.issued
2021-06  
dc.identifier.citation
Molinos, Miguel; Martín Stickle, Miguel; Navas, Pedro; Yagüe, Ángel; Manzanal, Diego; et al.; Toward a local maximum-entropy material point method at finite strain within a B-free approach; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 122; 20; 6-2021; 5594-5625  
dc.identifier.issn
0029-5981  
dc.identifier.uri
http://hdl.handle.net/11336/181764  
dc.description.abstract
The material point method can be regarded as a meshfree extension of the finite element method. This fact has two interesting consequences. On the one hand, this puts a vast literature at our disposal. On the other hand, many of this inheritance has been adopted without questioning it. A clear example of it is the use of the Voigt algebra, which introduces an artificial break point between the formulation of the continuum problem and its discretized counterpart. In the authors' opinion, the use of the Voigt rules leads to a cumbersome formulation where the physical sense of the operations is obscured since the well-known algebra rules are lost. And with them, the intuition about how stresses and strains are related. To illustrate it, we will describe gently and meticulously the whole process to solve the nonlinear governing equations for isothermal finite strain elastodynamics, concluding with a compact set of expressions ready to be implemented effortless. In addition, the classic Newmark- (Formula presented.) algorithm has been accommodated to the local maximum-entropy material point method framework by means of an incremental formulation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
B FREE  
dc.subject
FINITE STRAIN  
dc.subject
MATERIAL POINT METHOD  
dc.subject
NEWMARK-Β  
dc.subject
VOIGT FREE  
dc.subject.classification
Otras Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Toward a local maximum-entropy material point method at finite strain within a B-free approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T23:56:54Z  
dc.journal.volume
122  
dc.journal.number
20  
dc.journal.pagination
5594-5625  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Molinos, Miguel. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Martín Stickle, Miguel. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Navas, Pedro. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Yagüe, Ángel. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Pastor, Manuel. Universidad Politécnica de Madrid; España  
dc.journal.title
International Journal for Numerical Methods in Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/nme.6765  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/nme.6765