Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Modelling failure of polymers: An optimization strategy based on genetic algorithms and instrumented impact tests

Rueda, FedericoIcon ; Rull, NahuelIcon ; Quintana, María CamilaIcon ; Torres, Juan PabloIcon ; Messiha, Mario; Frank, A.; Arbeiter, Florian; Frontini, Patricia MariaIcon ; Pinter, G.
Fecha de publicación: 12/2021
Editorial: Springer
Revista: Journal of Dynamic Behavior of Materials
ISSN: 2199-7446
e-ISSN: 2199-7454
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the industry to optimize part design and estimate component service life. The difficulties include not only developing constitutive models capable of reproducing the complex polymer response at a reasonable computational cost, but also calibrating related parameters. That is to say, a way to find specific parameters which best represent the actual behavior of a material within the scope and limitations of a given constitutive or failure model. The aim of this study is to contribute in developing a robust inverse method calibration strategy. To address this issue, a novel approach based on genetic algorithms optimization (GA) together with finite element analysis (FEA) is proposed to blindly extract key constitutive and failure parameters from instrumented impact tests on single edge notched bending (SENB) specimens. The method was implemented to infer eight constitutive and failure parameters of a polyamide 12 (PA12) with an elasto-plastic ductile damage model. Triaxiality induced stable-unstable transition was successfully achieved by varying the notch depth of SENB specimens. Accordingly, three optimization schemes were conducted: (i) using only unstable experimental data; (ii) using only stable experimental data and (iii) using both simultaneously (multi-objective). The set of parameters obtained from each scheme were used to perform predictive FEA simulations, which were verified with experimental data. It was proven that both propagation regimes provide substantial information to obtain the mechanical response of the material. Simulation results evidenced the capability of the proposed strategy to predict the PA12 impact response and furthermore to fairly reproduce a completely different load case: a dynamic tensile test.
Palabras clave: DUCTILE DAMAGE , FAILURE OF POLYMERS , GENETIC ALGORITHMS , IMPACT BEHAVIOR , INVERSE METHOD , PA12
Ver el registro completo
 
Archivos asociados
Tamaño: 3.810Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/181751
DOI: https://doi.org/10.1007/s40870-021-00297-5
URL: https://link.springer.com/article/10.1007/s40870-021-00297-5
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Rueda, Federico; Rull, Nahuel; Quintana, María Camila; Torres, Juan Pablo; Messiha, Mario; et al.; Modelling failure of polymers: An optimization strategy based on genetic algorithms and instrumented impact tests; Springer; Journal of Dynamic Behavior of Materials; 7; 4; 12-2021; 538-552
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES