Mostrar el registro sencillo del ítem

dc.contributor.author
Anders, Christian  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.contributor.author
Fioretti, Fabricio D.  
dc.contributor.author
Ziegenhain, Gerolf  
dc.contributor.author
Urbassek, Herbert M.  
dc.date.available
2017-06-14T18:00:45Z  
dc.date.issued
2012-06-20  
dc.identifier.citation
Anders, Christian; Bringa, Eduardo Marcial; Fioretti, Fabricio D.; Ziegenhain, Gerolf; Urbassek, Herbert M.; Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape; American Physical Society; Physical Review B: Condensed Matter And Materials Physics; 85; 23; 20-6-2012; 1-14; 235440  
dc.identifier.issn
1098-0121  
dc.identifier.uri
http://hdl.handle.net/11336/18164  
dc.description.abstract
We present molecular-dynamics simulations of cratering induced by projectiles containing N ∼= 10–106 atoms in the velocity regime of 1–70 km/s. Self-bombardment of a condensed Ar and a Cu target are studied. We corroborate the earlier finding that for small clusters, N 1000, above a threshold regime, the crater volume scales linearly with the total impact energy E; by scaling energies to the target cohesive energy U, crater volumes of such diverse materials as condensed Ar and Cu coincide. At threshold Eth, craters are shallow. They become hemispheric at energies ∼5Eth. Part of the material excavated from the crater is sputtered. This fraction decreases with cluster size N. Relatively less material is sputtered from an Ar target than from a Cu target. Larger cluster impact, which we simulate up to N = 3 × 106, shows a stronger size effect, such that the resulting craters increase slightly more than linearly with total energy. This finding is discussed in light of available experimental data for μm- and mm-sized projectiles. Simulations on ductile samples containing pre-existing defects (nanocracks) show that such pre-existing damage plays a negligible role for crater formation and size in metals.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nanocracks  
dc.subject
Crater Formation  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-07T13:40:19Z  
dc.journal.volume
85  
dc.journal.number
23  
dc.journal.pagination
1-14; 235440  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Anders, Christian. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Fioretti, Fabricio D.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Ziegenhain, Gerolf. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania  
dc.description.fil
Fil: Urbassek, Herbert M.. University Kaiserslautern. Physics Department and Research Center OPTIMAS; Alemania  
dc.journal.title
Physical Review B: Condensed Matter And Materials Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevB.85.235440  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.235440