Mostrar el registro sencillo del ítem

dc.contributor.author
Charó, Gisela Daniela  
dc.contributor.author
Artana, Guillermo Osvaldo  
dc.contributor.author
Sciamarella, Denisse  
dc.date.available
2022-12-15T18:33:04Z  
dc.date.issued
2020-04  
dc.identifier.citation
Charó, Gisela Daniela; Artana, Guillermo Osvaldo; Sciamarella, Denisse; Topology of dynamical reconstructions from Lagrangian data; Elsevier Science; Physica D - Nonlinear Phenomena; 405; 4-2020  
dc.identifier.issn
0167-2789  
dc.identifier.uri
http://hdl.handle.net/11336/181418  
dc.description.abstract
Branched Manifold Analysis through Homologies (BraMAH) is a technique that computes the state-space topology of a dynamical reconstruction from scalar data. This work introduces the application of this technique to Lagrangian time series. The approach unveils the topological structure underlying the behavior of a fluid particle. When applied to a set of sparse particles, the results of the analysis can be used to classify them according to the dynamics they deploy during a given time window. Topological grids can be constructed to portray the spatial organization of the topological classes. The connection between the topological grids and the transport properties of the flow is examined using streaklines. Even if demonstrated here in the context of kinematic flow models, the generality of the method allows for its potential application to experimental or observational Lagrangian data satisfying the technical requirements for the analysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DELAY-COORDINATE EMBEDDING  
dc.subject
HOMOLOGY  
dc.subject
NONLINEAR TIME-SERIES ANALYSIS  
dc.subject
TOPOLOGY  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Topology of dynamical reconstructions from Lagrangian data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-12T14:35:34Z  
dc.journal.volume
405  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Charó, Gisela Daniela. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina  
dc.journal.title
Physica D - Nonlinear Phenomena  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physd.2020.132371  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167278919305056