Mostrar el registro sencillo del ítem

dc.contributor.author
Otero, Marcelo Javier  
dc.contributor.author
Sarno, Silvina N.  
dc.contributor.author
Acebedo, Sofía Lorena  
dc.contributor.author
Ramirez, Javier Alberto  
dc.date.available
2022-12-15T13:37:47Z  
dc.date.issued
2021-04  
dc.identifier.citation
Otero, Marcelo Javier; Sarno, Silvina N.; Acebedo, Sofía Lorena; Ramirez, Javier Alberto; Tracing molecular properties throughout evolution: A chemoinformatic approach; Academic Press Ltd - Elsevier Science Ltd; Journal of Theoretical Biology; 515; 4-2021; 1-10  
dc.identifier.issn
0022-5193  
dc.identifier.uri
http://hdl.handle.net/11336/181300  
dc.description.abstract
Evolution of metabolism is a longstanding yet unresolved question, and several hypotheses were proposed to address this complex process from a Darwinian point of view. Modern statistical bioinformatic approaches targeted to the comparative analysis of genomes are being used to detect signatures of natural selection at the gene and population level, as an attempt to understand the origin of primordial metabolism and its expansion. These studies, however, are still mainly centered on genes and the proteins they encode, somehow neglecting the small organic chemicals that support life processes. In this work, we selected steroids as an ancient family of metabolites widely distributed in all eukaryotes and applied unsupervised machine learning techniques to reveal the traits that natural selection has imprinted on molecular properties throughout the evolutionary process. Our results clearly show that sterols, the primal steroids that first appeared, have more conserved properties and that, from then on, more complex compounds with increasingly diverse properties have emerged, suggesting that chemical diversification parallels the expansion of biological complexity. In a wider context, these findings highlight the worth of chemoinformatic approaches to a better understanding the evolution of metabolism.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHEMOINFORMATICS  
dc.subject
MACHINE LEARNING  
dc.subject
METABOLIC EVOLUTION  
dc.subject
MOLECULAR PROPERTIES  
dc.subject
STEROIDS  
dc.subject.classification
Biología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tracing molecular properties throughout evolution: A chemoinformatic approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-28T13:41:23Z  
dc.journal.volume
515  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Otero, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Sarno, Silvina N.. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Acebedo, Sofía Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentina  
dc.description.fil
Fil: Ramirez, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentina  
dc.journal.title
Journal of Theoretical Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022519321000230  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jtbi.2021.110601