Artículo
Tuning Ginzburg-Landau theory to quantitatively study thin ferromagnetic materials
Guruciaga, Pamela Carolina
; Caballero, Nirvana Belén
; Jeudy, Vincent; Curiale, Carlos Javier
; Bustingorry, Sebastián
Fecha de publicación:
03/2021
Editorial:
IOP Publishing
Revista:
Journal of Statistical Mechanics: Theory and Experiment
ISSN:
1742-5468
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Along with experiments, numerical simulations are key to gaining insight into the underlying mechanisms governing domain wall motion in thin ferromagnetic systems. However, a direct comparison between numerical simulation of model systems and experimental results still represents a great challenge. Here, we present a tuned Ginzburg-Landau model to quantitatively study the dynamics of domain walls in quasi two-dimensional ferromagnetic systems with perpendicular magnetic anisotropy. This model incorporates material and experimental parameters and the micromagnetic prescription for thermal fluctuations, allowing us to perform material-specific simulations and at the same time recover universal features. We show that our model quantitatively reproduces previous experimental velocity-field data in the archetypal perpendicular magnetic anisotropy Pt/Co/Pt ultra-thin films in the three dynamical regimes of domain wall motion (creep, depinning and flow). In addition, we present a statistical analysis of the domain wall width parameter, showing that our model can provide detailed nano-scale information while retaining the complex behavior of a statistical disordered model.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Citación
Guruciaga, Pamela Carolina; Caballero, Nirvana Belén; Jeudy, Vincent; Curiale, Carlos Javier; Bustingorry, Sebastián; Tuning Ginzburg-Landau theory to quantitatively study thin ferromagnetic materials; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2021; 3; 3-2021; 1-18
Compartir
Altmétricas