Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach

Douna, Vanesa MarielIcon ; Barraza Bernadas, Verónica DanielaIcon ; Grings, Francisco MatiasIcon ; Huete, A.; Restrepo Coupe, N.; Beringer, J.
Fecha de publicación: 08/2021
Editorial: Academic Press Ltd - Elsevier Science Ltd
Revista: Journal of Arid Environments
ISSN: 0140-1963
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

In this work we have developed a random forest regressor to predict daily evapotranspiration in three eddy-covariance sites in Northern Australia from in-situ meteorological data and fluxes, and satellite leaf area index and land surface temperature data. The variable analysis for the random forest regressor suggests that leaf area index is the most important one at this temporal scale. A development sample corresponding to the period 2010–2013 was used, while the year 2014 has been separated for testing. Using this approach, we have obtained satisfactory performances in the three sites, with RMSE errors around 1 mm/day (and relative RMSEs ~0.3) in comparison to the measured values. With the final aim of testing the predictive capability of a model that uses remote sensing data as input, regressors that predict evapotranspiration exclusively from leaf area index and land surface temperature, have been trained resulting in reasonable performances. The RMSEs over the test set are ~1.1−1.2 mm/day. In all cases, the errors are comparable to those obtained in previous works that use similar locations and different methods. When compared to the measured values, the random forest predictions of evapotranspiration are more accurate than the global MODIS ET 8-day 1 km product, which was used as benchmark for the performance evaluation of our models, in the three selected locations.
Palabras clave: AUSTRALIA , EVAPOTRANSPIRATION , RANDOM FOREST , REMOTE SENSING
Ver el registro completo
 
Archivos asociados
Tamaño: 4.076Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/181246
URL: https://linkinghub.elsevier.com/retrieve/pii/S0140196321000793
DOI: http://dx.doi.org/10.1016/j.jaridenv.2021.104513
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Douna, Vanesa Mariel; Barraza Bernadas, Verónica Daniela; Grings, Francisco Matias; Huete, A.; Restrepo Coupe, N.; et al.; Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach; Academic Press Ltd - Elsevier Science Ltd; Journal of Arid Environments; 191; 8-2021; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES